Metamath Proof Explorer


Theorem dprdf11

Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0 = ( 0g𝐺 )
eldprdi.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
eldprdi.1 ( 𝜑𝐺 dom DProd 𝑆 )
eldprdi.2 ( 𝜑 → dom 𝑆 = 𝐼 )
eldprdi.3 ( 𝜑𝐹𝑊 )
dprdf11.4 ( 𝜑𝐻𝑊 )
Assertion dprdf11 ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ↔ 𝐹 = 𝐻 ) )

Proof

Step Hyp Ref Expression
1 eldprdi.0 0 = ( 0g𝐺 )
2 eldprdi.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
3 eldprdi.1 ( 𝜑𝐺 dom DProd 𝑆 )
4 eldprdi.2 ( 𝜑 → dom 𝑆 = 𝐼 )
5 eldprdi.3 ( 𝜑𝐹𝑊 )
6 dprdf11.4 ( 𝜑𝐻𝑊 )
7 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
8 2 3 4 5 7 dprdff ( 𝜑𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )
9 8 ffnd ( 𝜑𝐹 Fn 𝐼 )
10 2 3 4 6 7 dprdff ( 𝜑𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )
11 10 ffnd ( 𝜑𝐻 Fn 𝐼 )
12 eqfnfv ( ( 𝐹 Fn 𝐼𝐻 Fn 𝐼 ) → ( 𝐹 = 𝐻 ↔ ∀ 𝑥𝐼 ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
13 9 11 12 syl2anc ( 𝜑 → ( 𝐹 = 𝐻 ↔ ∀ 𝑥𝐼 ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
14 eqid ( -g𝐺 ) = ( -g𝐺 )
15 1 2 3 4 5 6 14 dprdfsub ( 𝜑 → ( ( 𝐹f ( -g𝐺 ) 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹f ( -g𝐺 ) 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( -g𝐺 ) ( 𝐺 Σg 𝐻 ) ) ) )
16 15 simpld ( 𝜑 → ( 𝐹f ( -g𝐺 ) 𝐻 ) ∈ 𝑊 )
17 1 2 3 4 16 dprdfeq0 ( 𝜑 → ( ( 𝐺 Σg ( 𝐹f ( -g𝐺 ) 𝐻 ) ) = 0 ↔ ( 𝐹f ( -g𝐺 ) 𝐻 ) = ( 𝑥𝐼0 ) ) )
18 15 simprd ( 𝜑 → ( 𝐺 Σg ( 𝐹f ( -g𝐺 ) 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( -g𝐺 ) ( 𝐺 Σg 𝐻 ) ) )
19 18 eqeq1d ( 𝜑 → ( ( 𝐺 Σg ( 𝐹f ( -g𝐺 ) 𝐻 ) ) = 0 ↔ ( ( 𝐺 Σg 𝐹 ) ( -g𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ) )
20 3 4 dprddomcld ( 𝜑𝐼 ∈ V )
21 fvexd ( ( 𝜑𝑥𝐼 ) → ( 𝐹𝑥 ) ∈ V )
22 fvexd ( ( 𝜑𝑥𝐼 ) → ( 𝐻𝑥 ) ∈ V )
23 8 feqmptd ( 𝜑𝐹 = ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) )
24 10 feqmptd ( 𝜑𝐻 = ( 𝑥𝐼 ↦ ( 𝐻𝑥 ) ) )
25 20 21 22 23 24 offval2 ( 𝜑 → ( 𝐹f ( -g𝐺 ) 𝐻 ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ) )
26 25 eqeq1d ( 𝜑 → ( ( 𝐹f ( -g𝐺 ) 𝐻 ) = ( 𝑥𝐼0 ) ↔ ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ) = ( 𝑥𝐼0 ) ) )
27 ovex ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ∈ V
28 27 rgenw 𝑥𝐼 ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ∈ V
29 mpteqb ( ∀ 𝑥𝐼 ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ∈ V → ( ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ) = ( 𝑥𝐼0 ) ↔ ∀ 𝑥𝐼 ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) = 0 ) )
30 28 29 ax-mp ( ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ) = ( 𝑥𝐼0 ) ↔ ∀ 𝑥𝐼 ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) = 0 )
31 dprdgrp ( 𝐺 dom DProd 𝑆𝐺 ∈ Grp )
32 3 31 syl ( 𝜑𝐺 ∈ Grp )
33 32 adantr ( ( 𝜑𝑥𝐼 ) → 𝐺 ∈ Grp )
34 8 ffvelrnda ( ( 𝜑𝑥𝐼 ) → ( 𝐹𝑥 ) ∈ ( Base ‘ 𝐺 ) )
35 10 ffvelrnda ( ( 𝜑𝑥𝐼 ) → ( 𝐻𝑥 ) ∈ ( Base ‘ 𝐺 ) )
36 7 1 14 grpsubeq0 ( ( 𝐺 ∈ Grp ∧ ( 𝐹𝑥 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐻𝑥 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) = 0 ↔ ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
37 33 34 35 36 syl3anc ( ( 𝜑𝑥𝐼 ) → ( ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) = 0 ↔ ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
38 37 ralbidva ( 𝜑 → ( ∀ 𝑥𝐼 ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) = 0 ↔ ∀ 𝑥𝐼 ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
39 30 38 syl5bb ( 𝜑 → ( ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( -g𝐺 ) ( 𝐻𝑥 ) ) ) = ( 𝑥𝐼0 ) ↔ ∀ 𝑥𝐼 ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
40 26 39 bitrd ( 𝜑 → ( ( 𝐹f ( -g𝐺 ) 𝐻 ) = ( 𝑥𝐼0 ) ↔ ∀ 𝑥𝐼 ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
41 17 19 40 3bitr3d ( 𝜑 → ( ( ( 𝐺 Σg 𝐹 ) ( -g𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ∀ 𝑥𝐼 ( 𝐹𝑥 ) = ( 𝐻𝑥 ) ) )
42 7 dprdssv ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 )
43 1 2 3 4 5 eldprdi ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) )
44 42 43 sselid ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) )
45 1 2 3 4 6 eldprdi ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( 𝐺 DProd 𝑆 ) )
46 42 45 sselid ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) )
47 7 1 14 grpsubeq0 ( ( 𝐺 ∈ Grp ∧ ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝐺 Σg 𝐹 ) ( -g𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) )
48 32 44 46 47 syl3anc ( 𝜑 → ( ( ( 𝐺 Σg 𝐹 ) ( -g𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) )
49 13 41 48 3bitr2rd ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ↔ 𝐹 = 𝐻 ) )