Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
eldprdi.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
3 |
|
eldprdi.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
4 |
|
eldprdi.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
5 |
|
eldprdi.3 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
6 |
|
dprdf11.4 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
8 |
2 3 4 5 7
|
dprdff |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
9 |
8
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
10 |
2 3 4 6 7
|
dprdff |
⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
11 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn 𝐼 ) |
12 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼 ) → ( 𝐹 = 𝐻 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 = 𝐻 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
14 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
15 |
1 2 3 4 5 6 14
|
dprdfsub |
⊢ ( 𝜑 → ( ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ∈ 𝑊 ) |
17 |
1 2 3 4 16
|
dprdfeq0 |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = 0 ↔ ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
18 |
15
|
simprd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = 0 ↔ ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ) ) |
20 |
3 4
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
21 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
22 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ V ) |
23 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
24 |
10
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
25 |
20 21 22 23 24
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
27 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ∈ V |
28 |
27
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ∈ V |
29 |
|
mpteqb |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ) ) |
30 |
28 29
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
31 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
32 |
3 31
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
34 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
35 |
10
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
36 |
7 1 14
|
grpsubeq0 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
37 |
33 34 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
38 |
37
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
39 |
30 38
|
syl5bb |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
40 |
26 39
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
41 |
17 19 40
|
3bitr3d |
⊢ ( 𝜑 → ( ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
42 |
7
|
dprdssv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
43 |
1 2 3 4 5
|
eldprdi |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
44 |
42 43
|
sselid |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ) |
45 |
1 2 3 4 6
|
eldprdi |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
46 |
42 45
|
sselid |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) |
47 |
7 1 14
|
grpsubeq0 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) ) |
48 |
32 44 46 47
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) ) |
49 |
13 41 48
|
3bitr2rd |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ↔ 𝐹 = 𝐻 ) ) |