| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdf1o.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdf1o.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdf1o.3 | 
							⊢ ( 𝜑  →  𝐹 : 𝐽 –1-1-onto→ 𝐼 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 9 | 
							
								
							 | 
							f1of1 | 
							⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼  →  𝐹 : 𝐽 –1-1→ 𝐼 )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : 𝐽 –1-1→ 𝐼 )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							dprddomcld | 
							⊢ ( 𝜑  →  𝐼  ∈  V )  | 
						
						
							| 12 | 
							
								
							 | 
							f1dmex | 
							⊢ ( ( 𝐹 : 𝐽 –1-1→ 𝐼  ∧  𝐼  ∈  V )  →  𝐽  ∈  V )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐽  ∈  V )  | 
						
						
							| 14 | 
							
								1 2
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							f1of | 
							⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼  →  𝐹 : 𝐽 ⟶ 𝐼 )  | 
						
						
							| 16 | 
							
								3 15
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : 𝐽 ⟶ 𝐼 )  | 
						
						
							| 17 | 
							
								
							 | 
							fco | 
							⊢ ( ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 )  ∧  𝐹 : 𝐽 ⟶ 𝐼 )  →  ( 𝑆  ∘  𝐹 ) : 𝐽 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 18 | 
							
								14 16 17
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑆  ∘  𝐹 ) : 𝐽 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 20 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 21 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  𝐹 : 𝐽 ⟶ 𝐼 )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  𝐽 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐼 )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  𝑦  ∈  𝐽 )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐼 )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ≠  𝑦 )  | 
						
						
							| 27 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  𝐹 : 𝐽 –1-1→ 𝐼 )  | 
						
						
							| 28 | 
							
								
							 | 
							f1fveq | 
							⊢ ( ( 𝐹 : 𝐽 –1-1→ 𝐼  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 29 | 
							
								27 22 24 28
							 | 
							syl12anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							necon3bid | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 )  ↔  𝑥  ≠  𝑦 ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑦 ) )  | 
						
						
							| 32 | 
							
								19 20 23 25 31 4
							 | 
							dprdcntz | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fvco3 | 
							⊢ ( ( 𝐹 : 𝐽 ⟶ 𝐼  ∧  𝑥  ∈  𝐽 )  →  ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 34 | 
							
								21 22 33
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							fvco3 | 
							⊢ ( ( 𝐹 : 𝐽 ⟶ 𝐼  ∧  𝑦  ∈  𝐽 )  →  ( ( 𝑆  ∘  𝐹 ) ‘ 𝑦 )  =  ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 36 | 
							
								21 24 35
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( ( 𝑆  ∘  𝐹 ) ‘ 𝑦 )  =  ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ∘  𝐹 ) ‘ 𝑦 ) )  =  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  | 
						
						
							| 38 | 
							
								32 34 37
							 | 
							3sstr4d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐽  ∧  𝑦  ∈  𝐽  ∧  𝑥  ≠  𝑦 ) )  →  ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ∘  𝐹 ) ‘ 𝑦 ) ) )  | 
						
						
							| 39 | 
							
								16 33
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							imaco | 
							⊢ ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) )  =  ( 𝑆  “  ( 𝐹  “  ( 𝐽  ∖  { 𝑥 } ) ) )  | 
						
						
							| 41 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  𝐹 : 𝐽 –1-1-onto→ 𝐼 )  | 
						
						
							| 42 | 
							
								
							 | 
							dff1o3 | 
							⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼  ↔  ( 𝐹 : 𝐽 –onto→ 𝐼  ∧  Fun  ◡ 𝐹 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							simprbi | 
							⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼  →  Fun  ◡ 𝐹 )  | 
						
						
							| 44 | 
							
								
							 | 
							imadif | 
							⊢ ( Fun  ◡ 𝐹  →  ( 𝐹  “  ( 𝐽  ∖  { 𝑥 } ) )  =  ( ( 𝐹  “  𝐽 )  ∖  ( 𝐹  “  { 𝑥 } ) ) )  | 
						
						
							| 45 | 
							
								41 43 44
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹  “  ( 𝐽  ∖  { 𝑥 } ) )  =  ( ( 𝐹  “  𝐽 )  ∖  ( 𝐹  “  { 𝑥 } ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							f1ofo | 
							⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼  →  𝐹 : 𝐽 –onto→ 𝐼 )  | 
						
						
							| 47 | 
							
								
							 | 
							foima | 
							⊢ ( 𝐹 : 𝐽 –onto→ 𝐼  →  ( 𝐹  “  𝐽 )  =  𝐼 )  | 
						
						
							| 48 | 
							
								41 46 47
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹  “  𝐽 )  =  𝐼 )  | 
						
						
							| 49 | 
							
								
							 | 
							f1ofn | 
							⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼  →  𝐹  Fn  𝐽 )  | 
						
						
							| 50 | 
							
								3 49
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹  Fn  𝐽 )  | 
						
						
							| 51 | 
							
								
							 | 
							fnsnfv | 
							⊢ ( ( 𝐹  Fn  𝐽  ∧  𝑥  ∈  𝐽 )  →  { ( 𝐹 ‘ 𝑥 ) }  =  ( 𝐹  “  { 𝑥 } ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  { ( 𝐹 ‘ 𝑥 ) }  =  ( 𝐹  “  { 𝑥 } ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹  “  { 𝑥 } )  =  { ( 𝐹 ‘ 𝑥 ) } )  | 
						
						
							| 54 | 
							
								48 53
							 | 
							difeq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( 𝐹  “  𝐽 )  ∖  ( 𝐹  “  { 𝑥 } ) )  =  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) )  | 
						
						
							| 55 | 
							
								45 54
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹  “  ( 𝐽  ∖  { 𝑥 } ) )  =  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							imaeq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝑆  “  ( 𝐹  “  ( 𝐽  ∖  { 𝑥 } ) ) )  =  ( 𝑆  “  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) ) )  | 
						
						
							| 57 | 
							
								40 56
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) )  =  ( 𝑆  “  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							unieqd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ∪  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) )  =  ∪  ( 𝑆  “  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) ) ) )  | 
						
						
							| 60 | 
							
								39 59
							 | 
							ineq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) ) ) )  =  ( ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) )  | 
						
						
							| 61 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 62 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 63 | 
							
								16
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐼 )  | 
						
						
							| 64 | 
							
								61 62 63 5 6
							 | 
							dprddisj | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { ( 𝐹 ‘ 𝑥 ) } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 65 | 
							
								60 64
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 66 | 
							
								
							 | 
							eqimss | 
							⊢ ( ( ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) }  →  ( ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) ) ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  ( ( ( 𝑆  ∘  𝐹 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ∘  𝐹 )  “  ( 𝐽  ∖  { 𝑥 } ) ) ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 68 | 
							
								4 5 6 8 13 18 38 67
							 | 
							dmdprdd | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ∘  𝐹 ) )  | 
						
						
							| 69 | 
							
								
							 | 
							rnco2 | 
							⊢ ran  ( 𝑆  ∘  𝐹 )  =  ( 𝑆  “  ran  𝐹 )  | 
						
						
							| 70 | 
							
								
							 | 
							forn | 
							⊢ ( 𝐹 : 𝐽 –onto→ 𝐼  →  ran  𝐹  =  𝐼 )  | 
						
						
							| 71 | 
							
								3 46 70
							 | 
							3syl | 
							⊢ ( 𝜑  →  ran  𝐹  =  𝐼 )  | 
						
						
							| 72 | 
							
								71
							 | 
							imaeq2d | 
							⊢ ( 𝜑  →  ( 𝑆  “  ran  𝐹 )  =  ( 𝑆  “  𝐼 ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 )  →  𝑆  Fn  𝐼 )  | 
						
						
							| 74 | 
							
								
							 | 
							fnima | 
							⊢ ( 𝑆  Fn  𝐼  →  ( 𝑆  “  𝐼 )  =  ran  𝑆 )  | 
						
						
							| 75 | 
							
								14 73 74
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝑆  “  𝐼 )  =  ran  𝑆 )  | 
						
						
							| 76 | 
							
								72 75
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝑆  “  ran  𝐹 )  =  ran  𝑆 )  | 
						
						
							| 77 | 
							
								69 76
							 | 
							eqtrid | 
							⊢ ( 𝜑  →  ran  ( 𝑆  ∘  𝐹 )  =  ran  𝑆 )  | 
						
						
							| 78 | 
							
								77
							 | 
							unieqd | 
							⊢ ( 𝜑  →  ∪  ran  ( 𝑆  ∘  𝐹 )  =  ∪  ran  𝑆 )  | 
						
						
							| 79 | 
							
								78
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  ( 𝑆  ∘  𝐹 ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  𝑆 ) )  | 
						
						
							| 80 | 
							
								6
							 | 
							dprdspan | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ∘  𝐹 )  →  ( 𝐺  DProd  ( 𝑆  ∘  𝐹 ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  ( 𝑆  ∘  𝐹 ) ) )  | 
						
						
							| 81 | 
							
								68 80
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ∘  𝐹 ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  ( 𝑆  ∘  𝐹 ) ) )  | 
						
						
							| 82 | 
							
								6
							 | 
							dprdspan | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  ( 𝐺  DProd  𝑆 )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  𝑆 ) )  | 
						
						
							| 83 | 
							
								1 82
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  𝑆 ) )  | 
						
						
							| 84 | 
							
								79 81 83
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ∘  𝐹 ) )  =  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 85 | 
							
								68 84
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ∘  𝐹 )  ∧  ( 𝐺  DProd  ( 𝑆  ∘  𝐹 ) )  =  ( 𝐺  DProd  𝑆 ) ) )  |