Step |
Hyp |
Ref |
Expression |
1 |
|
dprdf1o.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdf1o.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdf1o.3 |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1-onto→ 𝐼 ) |
4 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
9 |
|
f1of1 |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
11 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
12 |
|
f1dmex |
⊢ ( ( 𝐹 : 𝐽 –1-1→ 𝐼 ∧ 𝐼 ∈ V ) → 𝐽 ∈ V ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
14 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
15 |
|
f1of |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 : 𝐽 ⟶ 𝐼 ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐽 ⟶ 𝐼 ) |
17 |
|
fco |
⊢ ( ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ 𝐹 : 𝐽 ⟶ 𝐼 ) → ( 𝑆 ∘ 𝐹 ) : 𝐽 ⟶ ( SubGrp ‘ 𝐺 ) ) |
18 |
14 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝐹 ) : 𝐽 ⟶ ( SubGrp ‘ 𝐺 ) ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 dom DProd 𝑆 ) |
20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → dom 𝑆 = 𝐼 ) |
21 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐹 : 𝐽 ⟶ 𝐼 ) |
22 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐽 ) |
23 |
21 22
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
24 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) |
25 |
21 24
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐼 ) |
26 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐹 : 𝐽 –1-1→ 𝐼 ) |
28 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝐽 –1-1→ 𝐼 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
29 |
27 22 24 28
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
30 |
29
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 ≠ 𝑦 ) ) |
31 |
26 30
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
32 |
19 20 23 25 31 4
|
dprdcntz |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
33 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐽 ⟶ 𝐼 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
34 |
21 22 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
35 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐽 ⟶ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
36 |
21 24 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
37 |
36
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
38 |
32 34 37
|
3sstr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
39 |
16 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
40 |
|
imaco |
⊢ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) = ( 𝑆 “ ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) ) |
41 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐹 : 𝐽 –1-1-onto→ 𝐼 ) |
42 |
|
dff1o3 |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 ↔ ( 𝐹 : 𝐽 –onto→ 𝐼 ∧ Fun ◡ 𝐹 ) ) |
43 |
42
|
simprbi |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → Fun ◡ 𝐹 ) |
44 |
|
imadif |
⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) = ( ( 𝐹 “ 𝐽 ) ∖ ( 𝐹 “ { 𝑥 } ) ) ) |
45 |
41 43 44
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) = ( ( 𝐹 “ 𝐽 ) ∖ ( 𝐹 “ { 𝑥 } ) ) ) |
46 |
|
f1ofo |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 : 𝐽 –onto→ 𝐼 ) |
47 |
|
foima |
⊢ ( 𝐹 : 𝐽 –onto→ 𝐼 → ( 𝐹 “ 𝐽 ) = 𝐼 ) |
48 |
41 46 47
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝐽 ) = 𝐼 ) |
49 |
|
f1ofn |
⊢ ( 𝐹 : 𝐽 –1-1-onto→ 𝐼 → 𝐹 Fn 𝐽 ) |
50 |
3 49
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐽 ) |
51 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn 𝐽 ∧ 𝑥 ∈ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) |
52 |
50 51
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → { ( 𝐹 ‘ 𝑥 ) } = ( 𝐹 “ { 𝑥 } ) ) |
53 |
52
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ { 𝑥 } ) = { ( 𝐹 ‘ 𝑥 ) } ) |
54 |
48 53
|
difeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝐹 “ 𝐽 ) ∖ ( 𝐹 “ { 𝑥 } ) ) = ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) |
55 |
45 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) = ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) |
56 |
55
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝑆 “ ( 𝐹 “ ( 𝐽 ∖ { 𝑥 } ) ) ) = ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
57 |
40 56
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) = ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
58 |
57
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) |
60 |
39 59
|
ineq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) ) |
61 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐺 dom DProd 𝑆 ) |
62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → dom 𝑆 = 𝐼 ) |
63 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
64 |
61 62 63 5 6
|
dprddisj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑆 ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
65 |
60 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
66 |
|
eqimss |
⊢ ( ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( ( ( 𝑆 ∘ 𝐹 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ∘ 𝐹 ) “ ( 𝐽 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
68 |
4 5 6 8 13 18 38 67
|
dmdprdd |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ) |
69 |
|
rnco2 |
⊢ ran ( 𝑆 ∘ 𝐹 ) = ( 𝑆 “ ran 𝐹 ) |
70 |
|
forn |
⊢ ( 𝐹 : 𝐽 –onto→ 𝐼 → ran 𝐹 = 𝐼 ) |
71 |
3 46 70
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐼 ) |
72 |
71
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑆 “ ran 𝐹 ) = ( 𝑆 “ 𝐼 ) ) |
73 |
|
ffn |
⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → 𝑆 Fn 𝐼 ) |
74 |
|
fnima |
⊢ ( 𝑆 Fn 𝐼 → ( 𝑆 “ 𝐼 ) = ran 𝑆 ) |
75 |
14 73 74
|
3syl |
⊢ ( 𝜑 → ( 𝑆 “ 𝐼 ) = ran 𝑆 ) |
76 |
72 75
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 “ ran 𝐹 ) = ran 𝑆 ) |
77 |
69 76
|
eqtrid |
⊢ ( 𝜑 → ran ( 𝑆 ∘ 𝐹 ) = ran 𝑆 ) |
78 |
77
|
unieqd |
⊢ ( 𝜑 → ∪ ran ( 𝑆 ∘ 𝐹 ) = ∪ ran 𝑆 ) |
79 |
78
|
fveq2d |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ∘ 𝐹 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
80 |
6
|
dprdspan |
⊢ ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ∘ 𝐹 ) ) ) |
81 |
68 80
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ∘ 𝐹 ) ) ) |
82 |
6
|
dprdspan |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
83 |
1 82
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
84 |
79 81 83
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( 𝐺 DProd 𝑆 ) ) |
85 |
68 84
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( 𝐺 DProd 𝑆 ) ) ) |