Metamath Proof Explorer


Theorem dprdf2

Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdcntz.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdcntz.2 ( 𝜑 → dom 𝑆 = 𝐼 )
Assertion dprdf2 ( 𝜑𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 dprdcntz.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dprdcntz.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dprdf ( 𝐺 dom DProd 𝑆𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) )
4 1 3 syl ( 𝜑𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) )
5 2 feq2d ( 𝜑 → ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ↔ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) )
6 4 5 mpbid ( 𝜑𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )