Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
eldprdi.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
3 |
|
eldprdi.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
4 |
|
eldprdi.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
5 |
|
eldprdi.3 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
6 |
|
dprdfadd.4 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) |
7 |
|
dprdfadd.b |
⊢ + = ( +g ‘ 𝐺 ) |
8 |
3 4
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
9 |
2 3 4 5
|
dprdfcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
10 |
2 3 4 6
|
dprdfcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
12 |
2 3 4 5 11
|
dprdff |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
13 |
12
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
14 |
2 3 4 6 11
|
dprdff |
⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
15 |
14
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
16 |
8 9 10 13 15
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ) |
17 |
3 4
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
18 |
17
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
7
|
subgcl |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
20 |
18 9 10 19
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
21 |
2 3 4 5
|
dprdffsupp |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
22 |
2 3 4 6
|
dprdffsupp |
⊢ ( 𝜑 → 𝐻 finSupp 0 ) |
23 |
21 22
|
fsuppunfi |
⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ∈ Fin ) |
24 |
|
ssun1 |
⊢ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) |
26 |
1
|
fvexi |
⊢ 0 ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
28 |
12 25 8 27
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
29 |
|
ssun2 |
⊢ ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) |
30 |
29
|
a1i |
⊢ ( 𝜑 → ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) |
31 |
14 30 8 27
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
32 |
28 31
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) = ( 0 + 0 ) ) |
33 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
34 |
3 33
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
35 |
11 1
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
36 |
11 7 1
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 + 0 ) = 0 ) |
37 |
34 35 36
|
syl2anc2 |
⊢ ( 𝜑 → ( 0 + 0 ) = 0 ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( 0 + 0 ) = 0 ) |
39 |
32 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
40 |
39 8
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) |
41 |
23 40
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) |
42 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) |
43 |
42
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ) |
44 |
8
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∈ V ) |
45 |
|
funisfsupp |
⊢ ( ( Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) ) |
46 |
43 44 27 45
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) ) |
47 |
41 46
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) finSupp 0 ) |
48 |
2 3 4 20 47
|
dprdwd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∈ 𝑊 ) |
49 |
16 48
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐻 ) ∈ 𝑊 ) |
50 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
51 |
34
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
52 |
|
eqid |
⊢ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) = ( ( 𝐹 ∪ 𝐻 ) supp 0 ) |
53 |
2 3 4 5 50
|
dprdfcntz |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
54 |
2 3 4 6 50
|
dprdfcntz |
⊢ ( 𝜑 → ran 𝐻 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐻 ) ) |
55 |
2 3 4 49 50
|
dprdfcntz |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐻 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐹 ∘f + 𝐻 ) ) ) |
56 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝐺 ∈ Mnd ) |
57 |
|
vex |
⊢ 𝑥 ∈ V |
58 |
57
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝑥 ∈ V ) |
59 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) → 𝑘 ∈ 𝐼 ) |
60 |
59
|
adantl |
⊢ ( ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) → 𝑘 ∈ 𝐼 ) |
61 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
62 |
12 60 61
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
63 |
62
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐹 ‘ 𝑘 ) } ⊆ ( Base ‘ 𝐺 ) ) |
64 |
11 50
|
cntzsubm |
⊢ ( ( 𝐺 ∈ Mnd ∧ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( Base ‘ 𝐺 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ∈ ( SubMnd ‘ 𝐺 ) ) |
65 |
56 63 64
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ∈ ( SubMnd ‘ 𝐺 ) ) |
66 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
67 |
66
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝐻 Fn 𝐼 ) |
68 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝑥 ⊆ 𝐼 ) |
69 |
|
fnssres |
⊢ ( ( 𝐻 Fn 𝐼 ∧ 𝑥 ⊆ 𝐼 ) → ( 𝐻 ↾ 𝑥 ) Fn 𝑥 ) |
70 |
67 68 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) Fn 𝑥 ) |
71 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
73 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐺 dom DProd 𝑆 ) |
74 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → dom 𝑆 = 𝐼 ) |
75 |
73 74
|
dprdf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
76 |
60
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑘 ∈ 𝐼 ) |
77 |
75 76
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
78 |
11
|
subgss |
⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( Base ‘ 𝐺 ) ) |
79 |
77 78
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( Base ‘ 𝐺 ) ) |
80 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐹 ∈ 𝑊 ) |
81 |
2 73 74 80
|
dprdfcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
82 |
76 81
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
83 |
82
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → { ( 𝐹 ‘ 𝑘 ) } ⊆ ( 𝑆 ‘ 𝑘 ) ) |
84 |
11 50
|
cntz2ss |
⊢ ( ( ( 𝑆 ‘ 𝑘 ) ⊆ ( Base ‘ 𝐺 ) ∧ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( 𝑆 ‘ 𝑘 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
85 |
79 83 84
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
86 |
68
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐼 ) |
87 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
88 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) |
89 |
88
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ¬ 𝑘 ∈ 𝑥 ) |
90 |
|
nelne2 |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑘 ∈ 𝑥 ) → 𝑦 ≠ 𝑘 ) |
91 |
87 89 90
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≠ 𝑘 ) |
92 |
73 74 86 76 91 50
|
dprdcntz |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ) |
93 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐻 ∈ 𝑊 ) |
94 |
2 73 74 93
|
dprdfcl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
95 |
86 94
|
mpdan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
96 |
92 95
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ) |
97 |
85 96
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
98 |
72 97
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
99 |
98
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
100 |
|
ffnfv |
⊢ ( ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ↔ ( ( 𝐻 ↾ 𝑥 ) Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) ) |
101 |
70 99 100
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
102 |
|
resss |
⊢ ( 𝐻 ↾ 𝑥 ) ⊆ 𝐻 |
103 |
102
|
rnssi |
⊢ ran ( 𝐻 ↾ 𝑥 ) ⊆ ran 𝐻 |
104 |
50
|
cntzidss |
⊢ ( ( ran 𝐻 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐻 ) ∧ ran ( 𝐻 ↾ 𝑥 ) ⊆ ran 𝐻 ) → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
105 |
54 103 104
|
sylancl |
⊢ ( 𝜑 → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
107 |
22 27
|
fsuppres |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑥 ) finSupp 0 ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) finSupp 0 ) |
109 |
1 50 56 58 65 101 106 108
|
gsumzsubmcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
110 |
109
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
111 |
66 68
|
fssresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( Base ‘ 𝐺 ) ) |
112 |
11 1 50 56 58 111 106 108
|
gsumzcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) ∈ ( Base ‘ 𝐺 ) ) |
113 |
112
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( Base ‘ 𝐺 ) ) |
114 |
11 50
|
cntzrec |
⊢ ( ( { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( Base ‘ 𝐺 ) ∧ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( Base ‘ 𝐺 ) ) → ( { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ↔ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
115 |
113 63 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ↔ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
116 |
110 115
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
117 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
118 |
117
|
snss |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ↔ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
119 |
116 118
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
120 |
11 1 7 50 51 8 21 22 52 12 14 53 54 55 119
|
gsumzaddlem |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
121 |
49 120
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) ) |