Step |
Hyp |
Ref |
Expression |
1 |
|
dprdff.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
2 |
|
dprdff.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
3 |
|
dprdff.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
4 |
|
dprdff.3 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
5 |
1 2 3
|
dprdw |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) |
7 |
6
|
simp2d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑋 ) ) |
10 |
8 9
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑆 ‘ 𝑋 ) ) ) |
11 |
10
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑆 ‘ 𝑋 ) ) |
12 |
7 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑆 ‘ 𝑋 ) ) |