Metamath Proof Explorer


Theorem dprdfcl

Description: A finitely supported function in S has its X -th element in S ( X ) . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
dprdff.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdff.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dprdff.3 ( 𝜑𝐹𝑊 )
Assertion dprdfcl ( ( 𝜑𝑋𝐼 ) → ( 𝐹𝑋 ) ∈ ( 𝑆𝑋 ) )

Proof

Step Hyp Ref Expression
1 dprdff.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
2 dprdff.1 ( 𝜑𝐺 dom DProd 𝑆 )
3 dprdff.2 ( 𝜑 → dom 𝑆 = 𝐼 )
4 dprdff.3 ( 𝜑𝐹𝑊 )
5 1 2 3 dprdw ( 𝜑 → ( 𝐹𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ∧ 𝐹 finSupp 0 ) ) )
6 4 5 mpbid ( 𝜑 → ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ∧ 𝐹 finSupp 0 ) )
7 6 simp2d ( 𝜑 → ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) )
8 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
9 fveq2 ( 𝑥 = 𝑋 → ( 𝑆𝑥 ) = ( 𝑆𝑋 ) )
10 8 9 eleq12d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ↔ ( 𝐹𝑋 ) ∈ ( 𝑆𝑋 ) ) )
11 10 rspccva ( ( ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ∧ 𝑋𝐼 ) → ( 𝐹𝑋 ) ∈ ( 𝑆𝑋 ) )
12 7 11 sylan ( ( 𝜑𝑋𝐼 ) → ( 𝐹𝑋 ) ∈ ( 𝑆𝑋 ) )