| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dprdff.w | ⊢ 𝑊  =  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  } | 
						
							| 2 |  | dprdff.1 | ⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 ) | 
						
							| 3 |  | dprdff.2 | ⊢ ( 𝜑  →  dom  𝑆  =  𝐼 ) | 
						
							| 4 |  | dprdff.3 | ⊢ ( 𝜑  →  𝐹  ∈  𝑊 ) | 
						
							| 5 |  | dprdfcntz.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 7 | 1 2 3 4 6 | dprdff | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 8 | 7 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐼 ) | 
						
							| 9 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  =  𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  =  𝑧 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 12 | 10 | equcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  =  𝑧 )  →  𝑧  =  𝑦 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  =  𝑧 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 14 | 11 13 | oveq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  =  𝑧 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 15 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  𝐺 dom   DProd  𝑆 ) | 
						
							| 16 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  dom  𝑆  =  𝐼 ) | 
						
							| 17 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  𝑦  ∈  𝐼 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  𝑧  ∈  𝐼 ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  𝑦  ≠  𝑧 ) | 
						
							| 20 | 15 16 17 18 19 5 | dprdcntz | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑍 ‘ ( 𝑆 ‘ 𝑧 ) ) ) | 
						
							| 21 | 1 2 3 4 | dprdfcl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑆 ‘ 𝑦 ) ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑆 ‘ 𝑦 ) ) | 
						
							| 23 | 20 22 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑍 ‘ ( 𝑆 ‘ 𝑧 ) ) ) | 
						
							| 24 | 1 2 3 4 | dprdfcl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝑆 ‘ 𝑧 ) ) | 
						
							| 25 | 24 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝑆 ‘ 𝑧 ) ) | 
						
							| 26 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 27 | 26 5 | cntzi | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑍 ‘ ( 𝑆 ‘ 𝑧 ) )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝑆 ‘ 𝑧 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 28 | 23 25 27 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  ∧  𝑦  ≠  𝑧 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 29 | 14 28 | pm2.61dane | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ∀ 𝑧  ∈  𝐼 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 31 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝐹  Fn  𝐼 ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 )  =  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 34 | 32 33 | eqeq12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 35 | 34 | ralrn | ⊢ ( 𝐹  Fn  𝐼  →  ( ∀ 𝑥  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑧  ∈  𝐼 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 36 | 31 35 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ∀ 𝑥  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑧  ∈  𝐼 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 37 | 30 36 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ∀ 𝑥  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 38 | 7 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ran  𝐹  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 40 | 6 26 5 | elcntz | ⊢ ( ran  𝐹  ⊆  ( Base ‘ 𝐺 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑍 ‘ ran  𝐹 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑍 ‘ ran  𝐹 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 42 | 9 37 41 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐼 ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 44 |  | ffnfv | ⊢ ( 𝐹 : 𝐼 ⟶ ( 𝑍 ‘ ran  𝐹 )  ↔  ( 𝐹  Fn  𝐼  ∧  ∀ 𝑦  ∈  𝐼 ( 𝐹 ‘ 𝑦 )  ∈  ( 𝑍 ‘ ran  𝐹 ) ) ) | 
						
							| 45 | 8 43 44 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 46 | 45 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) |