Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Internal direct products dprdffsupp  
				
		 
		
			
		 
		Description:   A finitely supported function in S  is a finitely supported function.
       (Contributed by Mario Carneiro , 25-Apr-2016)   (Revised by AV , 11-Jul-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dprdff.w ⊢  𝑊   =  { ℎ   ∈  X  𝑖   ∈  𝐼  ( 𝑆  ‘ 𝑖  )  ∣  ℎ   finSupp   0   }  
					
						dprdff.1 ⊢  ( 𝜑   →  𝐺  dom   DProd  𝑆  )  
					
						dprdff.2 ⊢  ( 𝜑   →  dom  𝑆   =  𝐼  )  
					
						dprdff.3 ⊢  ( 𝜑   →  𝐹   ∈  𝑊  )  
				
					Assertion 
					dprdffsupp ⊢   ( 𝜑   →  𝐹   finSupp   0   )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dprdff.w ⊢  𝑊   =  { ℎ   ∈  X  𝑖   ∈  𝐼  ( 𝑆  ‘ 𝑖  )  ∣  ℎ   finSupp   0   }  
						
							2 
								
							 
							dprdff.1 ⊢  ( 𝜑   →  𝐺  dom   DProd  𝑆  )  
						
							3 
								
							 
							dprdff.2 ⊢  ( 𝜑   →  dom  𝑆   =  𝐼  )  
						
							4 
								
							 
							dprdff.3 ⊢  ( 𝜑   →  𝐹   ∈  𝑊  )  
						
							5 
								1  2  3 
							 
							dprdw ⊢  ( 𝜑   →  ( 𝐹   ∈  𝑊   ↔  ( 𝐹   Fn  𝐼   ∧  ∀ 𝑥   ∈  𝐼  ( 𝐹  ‘ 𝑥  )  ∈  ( 𝑆  ‘ 𝑥  )  ∧  𝐹   finSupp   0   ) ) )  
						
							6 
								4  5 
							 
							mpbid ⊢  ( 𝜑   →  ( 𝐹   Fn  𝐼   ∧  ∀ 𝑥   ∈  𝐼  ( 𝐹  ‘ 𝑥  )  ∈  ( 𝑆  ‘ 𝑥  )  ∧  𝐹   finSupp   0   ) )  
						
							7 
								6 
							 
							simp3d ⊢  ( 𝜑   →  𝐹   finSupp   0   )