| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldprdi.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | eldprdi.w | ⊢ 𝑊  =  { ℎ  ∈  X 𝑖  ∈  𝐼 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp   0  } | 
						
							| 3 |  | eldprdi.1 | ⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 ) | 
						
							| 4 |  | eldprdi.2 | ⊢ ( 𝜑  →  dom  𝑆  =  𝐼 ) | 
						
							| 5 |  | eldprdi.3 | ⊢ ( 𝜑  →  𝐹  ∈  𝑊 ) | 
						
							| 6 |  | dprdfinv.b | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 7 |  | dprdgrp | ⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 10 | 9 6 | grpinvf | ⊢ ( 𝐺  ∈  Grp  →  𝑁 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝜑  →  𝑁 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 12 | 2 3 4 5 9 | dprdff | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 13 |  | fcompt | ⊢ ( ( 𝑁 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 )  ∧  𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )  →  ( 𝑁  ∘  𝐹 )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  ∘  𝐹 )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 15 | 3 4 | dprdf2 | ⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 17 | 2 3 4 5 | dprdfcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑆 ‘ 𝑥 ) ) | 
						
							| 18 | 6 | subginvcl | ⊢ ( ( ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑆 ‘ 𝑥 ) )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝑆 ‘ 𝑥 ) ) | 
						
							| 19 | 16 17 18 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ( 𝑆 ‘ 𝑥 ) ) | 
						
							| 20 | 3 4 | dprddomcld | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 21 | 20 | mptexd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 22 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 24 | 2 3 4 5 | dprdffsupp | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 25 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ⊆  ( 𝐹  supp   0  ) ) | 
						
							| 26 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 28 | 12 25 20 27 | suppssr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐹  supp   0  ) ) )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐹  supp   0  ) ) )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑁 ‘  0  ) ) | 
						
							| 30 | 1 6 | grpinvid | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑁 ‘  0  )  =   0  ) | 
						
							| 31 | 8 30 | syl | ⊢ ( 𝜑  →  ( 𝑁 ‘  0  )  =   0  ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐹  supp   0  ) ) )  →  ( 𝑁 ‘  0  )  =   0  ) | 
						
							| 33 | 29 32 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∖  ( 𝐹  supp   0  ) ) )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) )  =   0  ) | 
						
							| 34 | 33 20 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) )  supp   0  )  ⊆  ( 𝐹  supp   0  ) ) | 
						
							| 35 |  | fsuppsssupp | ⊢ ( ( ( ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) ) )  ∧  ( 𝐹  finSupp   0   ∧  ( ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) )  supp   0  )  ⊆  ( 𝐹  supp   0  ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) )  finSupp   0  ) | 
						
							| 36 | 21 23 24 34 35 | syl22anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) )  finSupp   0  ) | 
						
							| 37 | 2 3 4 19 36 | dprdwd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑁 ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  𝑊 ) | 
						
							| 38 | 14 37 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑁  ∘  𝐹 )  ∈  𝑊 ) | 
						
							| 39 |  | eqid | ⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 ) | 
						
							| 40 | 2 3 4 5 39 | dprdfcntz | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ran  𝐹 ) ) | 
						
							| 41 | 9 1 39 6 8 20 12 40 24 | gsumzinv | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑁  ∘  𝐹 ) )  =  ( 𝑁 ‘ ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 42 | 38 41 | jca | ⊢ ( 𝜑  →  ( ( 𝑁  ∘  𝐹 )  ∈  𝑊  ∧  ( 𝐺  Σg  ( 𝑁  ∘  𝐹 ) )  =  ( 𝑁 ‘ ( 𝐺  Σg  𝐹 ) ) ) ) |