Step |
Hyp |
Ref |
Expression |
1 |
|
eldprdi.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
eldprdi.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
3 |
|
eldprdi.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
4 |
|
eldprdi.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
5 |
|
eldprdi.3 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
6 |
|
dprdfadd.4 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) |
7 |
|
dprdfsub.b |
⊢ − = ( -g ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
9 |
2 3 4 5 8
|
dprdff |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
10 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
11 |
2 3 4 6 8
|
dprdff |
⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
14 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
15 |
8 13 14 7
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐻 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
16 |
10 12 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
17 |
16
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
18 |
3 4
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
19 |
9
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
20 |
11
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ 𝐼 ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
21 |
18 10 12 19 20
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) ) |
22 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ∈ V ) |
23 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
24 |
3 23
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
25 |
8 14 24
|
grpinvf1o |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) |
26 |
|
f1of |
⊢ ( ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
28 |
27
|
feqmptd |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐻 ‘ 𝑘 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) |
30 |
12 20 28 29
|
fmptco |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) = ( 𝑘 ∈ 𝐼 ↦ ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
31 |
18 10 22 19 30
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
32 |
17 21 31
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
33 |
1 2 3 4 6 14
|
dprdfinv |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
34 |
33
|
simpld |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ∈ 𝑊 ) |
35 |
1 2 3 4 5 34 13
|
dprdfadd |
⊢ ( 𝜑 → ( ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) ) |
36 |
35
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ∈ 𝑊 ) |
37 |
32 36
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) ∈ 𝑊 ) |
38 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
39 |
33
|
simprd |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
41 |
35
|
simprd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
42 |
8
|
dprdssv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
43 |
1 2 3 4 5
|
eldprdi |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
44 |
42 43
|
sselid |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ) |
45 |
1 2 3 4 6
|
eldprdi |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
46 |
42 45
|
sselid |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) |
47 |
8 13 14 7
|
grpsubval |
⊢ ( ( ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
48 |
44 46 47
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
49 |
40 41 48
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |
50 |
38 49
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |
51 |
37 50
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) ) |