Step |
Hyp |
Ref |
Expression |
1 |
|
dprdlub.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdlub.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdlub.3 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
dprdlub.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ 𝑇 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
7 |
5 6
|
dprdval |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) ) |
9 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 dom DProd 𝑆 ) |
11 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
12 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
13 |
10 11 12
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐺 ∈ Mnd ) |
14 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝐼 ∈ V ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
|
subgsubm |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → dom 𝑆 = 𝐼 ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
22 |
6 10 19 20 21
|
dprdff |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
23 |
22
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 Fn 𝐼 ) |
24 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ 𝑇 ) |
25 |
6 10 19 20
|
dprdfcl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
26 |
24 25
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑇 ) |
27 |
26
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ∀ 𝑘 ∈ 𝐼 ( 𝑓 ‘ 𝑘 ) ∈ 𝑇 ) |
28 |
|
ffnfv |
⊢ ( 𝑓 : 𝐼 ⟶ 𝑇 ↔ ( 𝑓 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑓 ‘ 𝑘 ) ∈ 𝑇 ) ) |
29 |
23 27 28
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 : 𝐼 ⟶ 𝑇 ) |
30 |
6 10 19 20 9
|
dprdfcntz |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ran 𝑓 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝑓 ) ) |
31 |
6 10 19 20
|
dprdffsupp |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → 𝑓 finSupp ( 0g ‘ 𝐺 ) ) |
32 |
5 9 13 15 18 29 30 31
|
gsumzsubmcl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) → ( 𝐺 Σg 𝑓 ) ∈ 𝑇 ) |
33 |
32
|
fmpttd |
⊢ ( 𝜑 → ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) : { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⟶ 𝑇 ) |
34 |
33
|
frnd |
⊢ ( 𝜑 → ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ↦ ( 𝐺 Σg 𝑓 ) ) ⊆ 𝑇 ) |
35 |
8 34
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ 𝑇 ) |