| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdres.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdres.2 | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdres.3 | 
							⊢ ( 𝜑  →  𝐴  ⊆  𝐼 )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								6 3
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝑆  ↾  𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 9 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 10 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝐴  ⊆  𝐼 )  | 
						
						
							| 11 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 13 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝑦  ∈  𝐼 )  | 
						
						
							| 16 | 
							
								
							 | 
							eldifsni | 
							⊢ ( 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } )  →  𝑦  ≠  𝑥 )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝑦  ≠  𝑥 )  | 
						
						
							| 18 | 
							
								17
							 | 
							necomd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  𝑥  ≠  𝑦 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 20 | 
							
								8 9 12 15 18 19
							 | 
							dprdcntz | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) )  | 
						
						
							| 21 | 
							
								11
							 | 
							fvresd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 22 | 
							
								14
							 | 
							fvresd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 )  =  ( 𝑆 ‘ 𝑦 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 ) )  =  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) )  | 
						
						
							| 24 | 
							
								20 21 23
							 | 
							3sstr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) )  →  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ineq1d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  =  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 30 | 
							
								29
							 | 
							subgacs | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							acsmre | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 32 | 
							
								5 30 31
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							resss | 
							⊢ ( 𝑆  ↾  𝐴 )  ⊆  𝑆  | 
						
						
							| 36 | 
							
								
							 | 
							imass1 | 
							⊢ ( ( 𝑆  ↾  𝐴 )  ⊆  𝑆  →  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ( 𝑆  “  ( 𝐴  ∖  { 𝑥 } ) ) )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							ax-mp | 
							⊢ ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ( 𝑆  “  ( 𝐴  ∖  { 𝑥 } ) )  | 
						
						
							| 38 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  𝐼 )  | 
						
						
							| 39 | 
							
								
							 | 
							ssdif | 
							⊢ ( 𝐴  ⊆  𝐼  →  ( 𝐴  ∖  { 𝑥 } )  ⊆  ( 𝐼  ∖  { 𝑥 } ) )  | 
						
						
							| 40 | 
							
								
							 | 
							imass2 | 
							⊢ ( ( 𝐴  ∖  { 𝑥 } )  ⊆  ( 𝐼  ∖  { 𝑥 } )  →  ( 𝑆  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 41 | 
							
								38 39 40
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑆  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 42 | 
							
								37 41
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							unissd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  ran  𝑆  | 
						
						
							| 45 | 
							
								6
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  𝑆  ⊆  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 46 | 
							
								29
							 | 
							subgss | 
							⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝑥  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑥  ∈  𝒫  ( Base ‘ 𝐺 )  ↔  𝑥  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							sylibr | 
							⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝑥  ∈  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							ssriv | 
							⊢ ( SubGrp ‘ 𝐺 )  ⊆  𝒫  ( Base ‘ 𝐺 )  | 
						
						
							| 50 | 
							
								45 49
							 | 
							sstrdi | 
							⊢ ( 𝜑  →  ran  𝑆  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ran  𝑆  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 52 | 
							
								44 51
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							sspwuni | 
							⊢ ( ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  𝒫  ( Base ‘ 𝐺 )  ↔  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 55 | 
							
								33 34 43 54
							 | 
							mrcssd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) )  ⊆  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							sslin | 
							⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) )  ⊆  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  ⊆  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  ⊆  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 58 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 59 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 60 | 
							
								3
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 61 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 62 | 
							
								58 59 60 61 34
							 | 
							dprddisj | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 63 | 
							
								57 62
							 | 
							sseqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 64 | 
							
								6
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 65 | 
							
								60 64
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 66 | 
							
								61
							 | 
							subg0cl | 
							⊢ ( ( 𝑆 ‘ 𝑥 )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0g ‘ 𝐺 )  ∈  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 68 | 
							
								43 54
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 69 | 
							
								34
							 | 
							mrccl | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) )  ⊆  ( Base ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 70 | 
							
								33 68 69
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 71 | 
							
								61
							 | 
							subg0cl | 
							⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0g ‘ 𝐺 )  ∈  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 73 | 
							
								67 72
							 | 
							elind | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0g ‘ 𝐺 )  ∈  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							snssd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  { ( 0g ‘ 𝐺 ) }  ⊆  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 75 | 
							
								63 74
							 | 
							eqssd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 76 | 
							
								28 75
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 77 | 
							
								25 76
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 ) )  ∧  ( ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 ) )  ∧  ( ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } ) )  | 
						
						
							| 79 | 
							
								1 2
							 | 
							dprddomcld | 
							⊢ ( 𝜑  →  𝐼  ∈  V )  | 
						
						
							| 80 | 
							
								79 3
							 | 
							ssexd | 
							⊢ ( 𝜑  →  𝐴  ∈  V )  | 
						
						
							| 81 | 
							
								7
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐴 )  =  𝐴 )  | 
						
						
							| 82 | 
							
								19 61 34
							 | 
							dmdprd | 
							⊢ ( ( 𝐴  ∈  V  ∧  dom  ( 𝑆  ↾  𝐴 )  =  𝐴 )  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐴 )  ↔  ( 𝐺  ∈  Grp  ∧  ( 𝑆  ↾  𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 ) )  ∧  ( ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } ) ) ) )  | 
						
						
							| 83 | 
							
								80 81 82
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐴 )  ↔  ( 𝐺  ∈  Grp  ∧  ( 𝑆  ↾  𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  ( 𝐴  ∖  { 𝑥 } ) ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆  ↾  𝐴 ) ‘ 𝑦 ) )  ∧  ( ( ( 𝑆  ↾  𝐴 ) ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑆  ↾  𝐴 )  “  ( 𝐴  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } ) ) ) )  | 
						
						
							| 84 | 
							
								5 7 78 83
							 | 
							mpbir3and | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐴 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							rnss | 
							⊢ ( ( 𝑆  ↾  𝐴 )  ⊆  𝑆  →  ran  ( 𝑆  ↾  𝐴 )  ⊆  ran  𝑆 )  | 
						
						
							| 86 | 
							
								
							 | 
							uniss | 
							⊢ ( ran  ( 𝑆  ↾  𝐴 )  ⊆  ran  𝑆  →  ∪  ran  ( 𝑆  ↾  𝐴 )  ⊆  ∪  ran  𝑆 )  | 
						
						
							| 87 | 
							
								35 85 86
							 | 
							mp2b | 
							⊢ ∪  ran  ( 𝑆  ↾  𝐴 )  ⊆  ∪  ran  𝑆  | 
						
						
							| 88 | 
							
								87
							 | 
							a1i | 
							⊢ ( 𝜑  →  ∪  ran  ( 𝑆  ↾  𝐴 )  ⊆  ∪  ran  𝑆 )  | 
						
						
							| 89 | 
							
								
							 | 
							sspwuni | 
							⊢ ( ran  𝑆  ⊆  𝒫  ( Base ‘ 𝐺 )  ↔  ∪  ran  𝑆  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 90 | 
							
								50 89
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∪  ran  𝑆  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 91 | 
							
								32 34 88 90
							 | 
							mrcssd | 
							⊢ ( 𝜑  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  ( 𝑆  ↾  𝐴 ) )  ⊆  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  𝑆 ) )  | 
						
						
							| 92 | 
							
								34
							 | 
							dprdspan | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐴 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐴 ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  ( 𝑆  ↾  𝐴 ) ) )  | 
						
						
							| 93 | 
							
								84 92
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐴 ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  ( 𝑆  ↾  𝐴 ) ) )  | 
						
						
							| 94 | 
							
								34
							 | 
							dprdspan | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  ( 𝐺  DProd  𝑆 )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  𝑆 ) )  | 
						
						
							| 95 | 
							
								1 94
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  𝑆 ) )  | 
						
						
							| 96 | 
							
								91 93 95
							 | 
							3sstr4d | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐴 ) )  ⊆  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 97 | 
							
								84 96
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐴 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐴 ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  |