Step |
Hyp |
Ref |
Expression |
1 |
|
dprdres.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdres.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdres.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) |
4 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
6 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
7 |
6 3
|
fssresd |
⊢ ( 𝜑 → ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
8 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐺 dom DProd 𝑆 ) |
9 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → dom 𝑆 = 𝐼 ) |
10 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐴 ⊆ 𝐼 ) |
11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝐴 ) |
12 |
10 11
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ 𝐼 ) |
13 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) → 𝑦 ∈ 𝐴 ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ 𝐴 ) |
15 |
10 14
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ 𝐼 ) |
16 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) → 𝑦 ≠ 𝑥 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ≠ 𝑥 ) |
18 |
17
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ≠ 𝑦 ) |
19 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
20 |
8 9 12 15 18 19
|
dprdcntz |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
21 |
11
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
22 |
14
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) = ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
24 |
20 21 23
|
3sstr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
25 |
24
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
26 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
28 |
27
|
ineq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
30 |
29
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
31 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
32 |
5 30 31
|
3syl |
⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
34 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
35 |
|
resss |
⊢ ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 |
36 |
|
imass1 |
⊢ ( ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 → ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ) |
37 |
35 36
|
ax-mp |
⊢ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) |
38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝐼 ) |
39 |
|
ssdif |
⊢ ( 𝐴 ⊆ 𝐼 → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( 𝐼 ∖ { 𝑥 } ) ) |
40 |
|
imass2 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ⊆ ( 𝐼 ∖ { 𝑥 } ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
41 |
38 39 40
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
42 |
37 41
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
43 |
42
|
unissd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
44 |
|
imassrn |
⊢ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 |
45 |
6
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
46 |
29
|
subgss |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ⊆ ( Base ‘ 𝐺 ) ) |
47 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ( Base ‘ 𝐺 ) ↔ 𝑥 ⊆ ( Base ‘ 𝐺 ) ) |
48 |
46 47
|
sylibr |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
49 |
48
|
ssriv |
⊢ ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) |
50 |
45 49
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
52 |
44 51
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
53 |
|
sspwuni |
⊢ ( ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
54 |
52 53
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
55 |
33 34 43 54
|
mrcssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
56 |
|
sslin |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
58 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐺 dom DProd 𝑆 ) |
59 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom 𝑆 = 𝐼 ) |
60 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
61 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
62 |
58 59 60 61 34
|
dprddisj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
63 |
57 62
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
64 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
65 |
60 64
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
66 |
61
|
subg0cl |
⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
68 |
43 54
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
69 |
34
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
70 |
33 68 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
71 |
61
|
subg0cl |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) |
72 |
70 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) |
73 |
67 72
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
74 |
73
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { ( 0g ‘ 𝐺 ) } ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
75 |
63 74
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
76 |
28 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
77 |
25 76
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
78 |
77
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
79 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
80 |
79 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
81 |
7
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) |
82 |
19 61 34
|
dmdprd |
⊢ ( ( 𝐴 ∈ V ∧ dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
83 |
80 81 82
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ( 𝐴 ∖ { 𝑥 } ) ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑦 ) ) ∧ ( ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑆 ↾ 𝐴 ) “ ( 𝐴 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
84 |
5 7 78 83
|
mpbir3and |
⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ) |
85 |
|
rnss |
⊢ ( ( 𝑆 ↾ 𝐴 ) ⊆ 𝑆 → ran ( 𝑆 ↾ 𝐴 ) ⊆ ran 𝑆 ) |
86 |
|
uniss |
⊢ ( ran ( 𝑆 ↾ 𝐴 ) ⊆ ran 𝑆 → ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 ) |
87 |
35 85 86
|
mp2b |
⊢ ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 |
88 |
87
|
a1i |
⊢ ( 𝜑 → ∪ ran ( 𝑆 ↾ 𝐴 ) ⊆ ∪ ran 𝑆 ) |
89 |
|
sspwuni |
⊢ ( ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
90 |
50 89
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
91 |
32 34 88 90
|
mrcssd |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
92 |
34
|
dprdspan |
⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ) |
93 |
84 92
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran ( 𝑆 ↾ 𝐴 ) ) ) |
94 |
34
|
dprdspan |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
95 |
1 94
|
syl |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran 𝑆 ) ) |
96 |
91 93 95
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
97 |
84 96
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |