Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
6 |
|
snex |
⊢ { 𝐴 } ∈ V |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 𝐴 } ∈ V ) |
8 |
|
f1osng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } –1-1-onto→ { 𝑆 } ) |
9 |
|
f1of |
⊢ ( { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } –1-1-onto→ { 𝑆 } → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } ⟶ { 𝑆 } ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } ⟶ { 𝑆 } ) |
11 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
12 |
11
|
snssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 𝑆 } ⊆ ( SubGrp ‘ 𝐺 ) ) |
13 |
10 12
|
fssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } ⟶ ( SubGrp ‘ 𝐺 ) ) |
14 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ { 𝐴 } ) |
15 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 = 𝐴 ) |
17 |
|
simpr2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ { 𝐴 } ) |
18 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝐴 } → 𝑦 = 𝐴 ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 = 𝐴 ) |
20 |
16 19
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 = 𝑦 ) |
21 |
|
simpr3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
22 |
20 21
|
pm2.21ddne |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑦 ) ) ) |
23 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → 𝐺 ∈ Grp ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
25 |
24
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
26 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
27 |
23 25 26
|
3syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
28 |
15
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → 𝑥 = 𝐴 ) |
29 |
28
|
sneqd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → { 𝑥 } = { 𝐴 } ) |
30 |
29
|
difeq2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 𝐴 } ∖ { 𝑥 } ) = ( { 𝐴 } ∖ { 𝐴 } ) ) |
31 |
|
difid |
⊢ ( { 𝐴 } ∖ { 𝐴 } ) = ∅ |
32 |
30 31
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 𝐴 } ∖ { 𝑥 } ) = ∅ ) |
33 |
32
|
imaeq2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ( { 〈 𝐴 , 𝑆 〉 } “ ∅ ) ) |
34 |
|
ima0 |
⊢ ( { 〈 𝐴 , 𝑆 〉 } “ ∅ ) = ∅ |
35 |
33 34
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ∅ ) |
36 |
35
|
unieqd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ∪ ∅ ) |
37 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
38 |
36 37
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ∅ ) |
39 |
|
0ss |
⊢ ∅ ⊆ { ( 0g ‘ 𝐺 ) } |
40 |
39
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∅ ⊆ { ( 0g ‘ 𝐺 ) } ) |
41 |
38 40
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
42 |
2
|
0subg |
⊢ ( 𝐺 ∈ Grp → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
43 |
23 42
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
44 |
3
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ⊆ { ( 0g ‘ 𝐺 ) } ∧ { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
45 |
27 41 43 44
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
46 |
2
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
48 |
15
|
fveq2d |
⊢ ( 𝑥 ∈ { 𝐴 } → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) = ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝐴 ) ) |
49 |
|
fvsng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝐴 ) = 𝑆 ) |
50 |
48 49
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) = 𝑆 ) |
51 |
47 50
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( 0g ‘ 𝐺 ) ∈ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ) |
52 |
51
|
snssd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → { ( 0g ‘ 𝐺 ) } ⊆ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ) |
53 |
45 52
|
sstrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ) |
54 |
|
sseqin2 |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ↔ ( ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) |
55 |
53 54
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) |
56 |
55 45
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
57 |
1 2 3 5 7 13 22 56
|
dmdprdd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 dom DProd { 〈 𝐴 , 𝑆 〉 } ) |
58 |
3
|
dprdspan |
⊢ ( 𝐺 dom DProd { 〈 𝐴 , 𝑆 〉 } → ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) ) |
59 |
57 58
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) ) |
60 |
|
rnsnopg |
⊢ ( 𝐴 ∈ 𝑉 → ran { 〈 𝐴 , 𝑆 〉 } = { 𝑆 } ) |
61 |
60
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ran { 〈 𝐴 , 𝑆 〉 } = { 𝑆 } ) |
62 |
61
|
unieqd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∪ ran { 〈 𝐴 , 𝑆 〉 } = ∪ { 𝑆 } ) |
63 |
|
unisng |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∪ { 𝑆 } = 𝑆 ) |
64 |
63
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∪ { 𝑆 } = 𝑆 ) |
65 |
62 64
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∪ ran { 〈 𝐴 , 𝑆 〉 } = 𝑆 ) |
66 |
65
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 ) ) |
67 |
5 25 26
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
68 |
3
|
mrcid |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 ) = 𝑆 ) |
69 |
67 68
|
sylancom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 ) = 𝑆 ) |
70 |
66 69
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) = 𝑆 ) |
71 |
59 70
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = 𝑆 ) |
72 |
57 71
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 dom DProd { 〈 𝐴 , 𝑆 〉 } ∧ ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = 𝑆 ) ) |