| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝐺  ∈  Grp )  | 
						
						
							| 6 | 
							
								
							 | 
							snex | 
							⊢ { 𝐴 }  ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  { 𝐴 }  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							f1osng | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  { 〈 𝐴 ,  𝑆 〉 } : { 𝐴 } –1-1-onto→ { 𝑆 } )  | 
						
						
							| 9 | 
							
								
							 | 
							f1of | 
							⊢ ( { 〈 𝐴 ,  𝑆 〉 } : { 𝐴 } –1-1-onto→ { 𝑆 }  →  { 〈 𝐴 ,  𝑆 〉 } : { 𝐴 } ⟶ { 𝑆 } )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  { 〈 𝐴 ,  𝑆 〉 } : { 𝐴 } ⟶ { 𝑆 } )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							snssd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  { 𝑆 }  ⊆  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							fssd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  { 〈 𝐴 ,  𝑆 〉 } : { 𝐴 } ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑥  ∈  { 𝐴 }  ∧  𝑦  ∈  { 𝐴 }  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  { 𝐴 } )  | 
						
						
							| 15 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑥  ∈  { 𝐴 }  →  𝑥  =  𝐴 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑥  ∈  { 𝐴 }  ∧  𝑦  ∈  { 𝐴 }  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  =  𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑥  ∈  { 𝐴 }  ∧  𝑦  ∈  { 𝐴 }  ∧  𝑥  ≠  𝑦 ) )  →  𝑦  ∈  { 𝐴 } )  | 
						
						
							| 18 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑦  ∈  { 𝐴 }  →  𝑦  =  𝐴 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑥  ∈  { 𝐴 }  ∧  𝑦  ∈  { 𝐴 }  ∧  𝑥  ≠  𝑦 ) )  →  𝑦  =  𝐴 )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑥  ∈  { 𝐴 }  ∧  𝑦  ∈  { 𝐴 }  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  =  𝑦 )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑥  ∈  { 𝐴 }  ∧  𝑦  ∈  { 𝐴 }  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ≠  𝑦 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							pm2.21ddne | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑥  ∈  { 𝐴 }  ∧  𝑦  ∈  { 𝐴 }  ∧  𝑥  ≠  𝑦 ) )  →  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑦 ) ) )  | 
						
						
							| 23 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  𝐺  ∈  Grp )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 25 | 
							
								24
							 | 
							subgacs | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							acsmre | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 27 | 
							
								23 25 26
							 | 
							3syl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 28 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  𝑥  =  𝐴 )  | 
						
						
							| 29 | 
							
								28
							 | 
							sneqd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  { 𝑥 }  =  { 𝐴 } )  | 
						
						
							| 30 | 
							
								29
							 | 
							difeq2d | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( { 𝐴 }  ∖  { 𝑥 } )  =  ( { 𝐴 }  ∖  { 𝐴 } ) )  | 
						
						
							| 31 | 
							
								
							 | 
							difid | 
							⊢ ( { 𝐴 }  ∖  { 𝐴 } )  =  ∅  | 
						
						
							| 32 | 
							
								30 31
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( { 𝐴 }  ∖  { 𝑥 } )  =  ∅ )  | 
						
						
							| 33 | 
							
								32
							 | 
							imaeq2d | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) )  =  ( { 〈 𝐴 ,  𝑆 〉 }  “  ∅ ) )  | 
						
						
							| 34 | 
							
								
							 | 
							ima0 | 
							⊢ ( { 〈 𝐴 ,  𝑆 〉 }  “  ∅ )  =  ∅  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) )  =  ∅ )  | 
						
						
							| 36 | 
							
								35
							 | 
							unieqd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) )  =  ∪  ∅ )  | 
						
						
							| 37 | 
							
								
							 | 
							uni0 | 
							⊢ ∪  ∅  =  ∅  | 
						
						
							| 38 | 
							
								36 37
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) )  =  ∅ )  | 
						
						
							| 39 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  { ( 0g ‘ 𝐺 ) }  | 
						
						
							| 40 | 
							
								39
							 | 
							a1i | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ∅  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							eqsstrd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 42 | 
							
								2
							 | 
							0subg | 
							⊢ ( 𝐺  ∈  Grp  →  { ( 0g ‘ 𝐺 ) }  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 43 | 
							
								23 42
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  { ( 0g ‘ 𝐺 ) }  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 44 | 
							
								3
							 | 
							mrcsscl | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) )  ⊆  { ( 0g ‘ 𝐺 ) }  ∧  { ( 0g ‘ 𝐺 ) }  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 45 | 
							
								27 41 43 44
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 46 | 
							
								2
							 | 
							subg0cl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝑆 )  | 
						
						
							| 47 | 
							
								46
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( 0g ‘ 𝐺 )  ∈  𝑆 )  | 
						
						
							| 48 | 
							
								15
							 | 
							fveq2d | 
							⊢ ( 𝑥  ∈  { 𝐴 }  →  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 )  =  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝐴 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							fvsng | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝐴 )  =  𝑆 )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							sylan9eqr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 )  =  𝑆 )  | 
						
						
							| 51 | 
							
								47 50
							 | 
							eleqtrrd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( 0g ‘ 𝐺 )  ∈  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							snssd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  { ( 0g ‘ 𝐺 ) }  ⊆  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 ) )  | 
						
						
							| 53 | 
							
								45 52
							 | 
							sstrd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) )  ⊆  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							sseqin2 | 
							⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) )  ⊆  ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 )  ↔  ( ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							sylib | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) ) )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 56 | 
							
								55 45
							 | 
							eqsstrd | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  { 𝐴 } )  →  ( ( { 〈 𝐴 ,  𝑆 〉 } ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( { 〈 𝐴 ,  𝑆 〉 }  “  ( { 𝐴 }  ∖  { 𝑥 } ) ) ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 57 | 
							
								1 2 3 5 7 13 22 56
							 | 
							dmdprdd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝐺 dom   DProd  { 〈 𝐴 ,  𝑆 〉 } )  | 
						
						
							| 58 | 
							
								3
							 | 
							dprdspan | 
							⊢ ( 𝐺 dom   DProd  { 〈 𝐴 ,  𝑆 〉 }  →  ( 𝐺  DProd  { 〈 𝐴 ,  𝑆 〉 } )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  { 〈 𝐴 ,  𝑆 〉 } ) )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐺  DProd  { 〈 𝐴 ,  𝑆 〉 } )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  { 〈 𝐴 ,  𝑆 〉 } ) )  | 
						
						
							| 60 | 
							
								
							 | 
							rnsnopg | 
							⊢ ( 𝐴  ∈  𝑉  →  ran  { 〈 𝐴 ,  𝑆 〉 }  =  { 𝑆 } )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ran  { 〈 𝐴 ,  𝑆 〉 }  =  { 𝑆 } )  | 
						
						
							| 62 | 
							
								61
							 | 
							unieqd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ∪  ran  { 〈 𝐴 ,  𝑆 〉 }  =  ∪  { 𝑆 } )  | 
						
						
							| 63 | 
							
								
							 | 
							unisng | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ∪  { 𝑆 }  =  𝑆 )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ∪  { 𝑆 }  =  𝑆 )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ∪  ran  { 〈 𝐴 ,  𝑆 〉 }  =  𝑆 )  | 
						
						
							| 66 | 
							
								65
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  { 〈 𝐴 ,  𝑆 〉 } )  =  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 ) )  | 
						
						
							| 67 | 
							
								5 25 26
							 | 
							3syl | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 68 | 
							
								3
							 | 
							mrcid | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 )  =  𝑆 )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							sylancom | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 )  =  𝑆 )  | 
						
						
							| 70 | 
							
								66 69
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ran  { 〈 𝐴 ,  𝑆 〉 } )  =  𝑆 )  | 
						
						
							| 71 | 
							
								59 70
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐺  DProd  { 〈 𝐴 ,  𝑆 〉 } )  =  𝑆 )  | 
						
						
							| 72 | 
							
								57 71
							 | 
							jca | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐺 dom   DProd  { 〈 𝐴 ,  𝑆 〉 }  ∧  ( 𝐺  DProd  { 〈 𝐴 ,  𝑆 〉 } )  =  𝑆 ) )  |