Step |
Hyp |
Ref |
Expression |
1 |
|
dprdspan.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
2 |
|
id |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑆 ) |
3 |
|
eqidd |
⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 = dom 𝑆 ) |
4 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
6 |
5
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
7 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
8 |
4 6 7
|
3syl |
⊢ ( 𝐺 dom DProd 𝑆 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
9 |
|
dprdf |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ) |
10 |
9
|
ffnd |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 Fn dom 𝑆 ) |
11 |
|
fniunfv |
⊢ ( 𝑆 Fn dom 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 ) |
12 |
10 11
|
syl |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 ) |
13 |
|
simpl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → 𝐺 dom DProd 𝑆 ) |
14 |
|
eqidd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → dom 𝑆 = dom 𝑆 ) |
15 |
|
simpr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → 𝑘 ∈ dom 𝑆 ) |
16 |
13 14 15
|
dprdub |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
17 |
16
|
ralrimiva |
⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
18 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ↔ ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
19 |
17 18
|
sylibr |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
20 |
12 19
|
eqsstrrd |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( 𝐺 DProd 𝑆 ) ) |
21 |
5
|
dprdssv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
22 |
20 21
|
sstrdi |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
23 |
1
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
24 |
8 22 23
|
syl2anc |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐾 ‘ ∪ ran 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
25 |
|
eqimss |
⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
26 |
12 25
|
syl |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
27 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ↔ ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
28 |
26 27
|
sylib |
⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
29 |
28
|
r19.21bi |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
30 |
8 1 22
|
mrcssidd |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ∪ ran 𝑆 ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
32 |
29 31
|
sstrd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
33 |
2 3 24 32
|
dprdlub |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
34 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
35 |
1
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran 𝑆 ⊆ ( 𝐺 DProd 𝑆 ) ∧ ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran 𝑆 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
36 |
8 20 34 35
|
syl3anc |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐾 ‘ ∪ ran 𝑆 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
37 |
33 36
|
eqssd |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( 𝐾 ‘ ∪ ran 𝑆 ) ) |