| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdspan.k |
⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 2 |
|
id |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑆 ) |
| 3 |
|
eqidd |
⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 = dom 𝑆 ) |
| 4 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 6 |
5
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 8 |
4 6 7
|
3syl |
⊢ ( 𝐺 dom DProd 𝑆 → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 9 |
|
dprdf |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 10 |
9
|
ffnd |
⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 Fn dom 𝑆 ) |
| 11 |
|
fniunfv |
⊢ ( 𝑆 Fn dom 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 ) |
| 13 |
|
simpl |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → 𝐺 dom DProd 𝑆 ) |
| 14 |
|
eqidd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → dom 𝑆 = dom 𝑆 ) |
| 15 |
|
simpr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → 𝑘 ∈ dom 𝑆 ) |
| 16 |
13 14 15
|
dprdub |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 17 |
16
|
ralrimiva |
⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 18 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ↔ ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 20 |
12 19
|
eqsstrrd |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 21 |
5
|
dprdssv |
⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 22 |
20 21
|
sstrdi |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 23 |
1
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 |
8 22 23
|
syl2anc |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐾 ‘ ∪ ran 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 25 |
|
eqimss |
⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) = ∪ ran 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 26 |
12 25
|
syl |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 27 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ↔ ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 28 |
26 27
|
sylib |
⊢ ( 𝐺 dom DProd 𝑆 → ∀ 𝑘 ∈ dom 𝑆 ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 29 |
28
|
r19.21bi |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ∪ ran 𝑆 ) |
| 30 |
8 1 22
|
mrcssidd |
⊢ ( 𝐺 dom DProd 𝑆 → ∪ ran 𝑆 ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ∪ ran 𝑆 ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 32 |
29 31
|
sstrd |
⊢ ( ( 𝐺 dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 33 |
2 3 24 32
|
dprdlub |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐾 ‘ ∪ ran 𝑆 ) ) |
| 34 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 35 |
1
|
mrcsscl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ran 𝑆 ⊆ ( 𝐺 DProd 𝑆 ) ∧ ( 𝐺 DProd 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ran 𝑆 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 36 |
8 20 34 35
|
syl3anc |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐾 ‘ ∪ ran 𝑆 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 37 |
33 36
|
eqssd |
⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ( 𝐾 ‘ ∪ ran 𝑆 ) ) |