| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdsplit.2 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdsplit.i | 
							⊢ ( 𝜑  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdsplit.u | 
							⊢ ( 𝜑  →  𝐼  =  ( 𝐶  ∪  𝐷 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdsplit.s | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							dprdsplit.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 6 | 
							
								1
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 7 | 
							
								
							 | 
							ssun1 | 
							⊢ 𝐶  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 8 | 
							
								7 3
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  𝐶  ⊆  𝐼 )  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							dprdres | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ssun2 | 
							⊢ 𝐷  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 14 | 
							
								13 3
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  𝐷  ⊆  𝐼 )  | 
						
						
							| 15 | 
							
								5 6 14
							 | 
							dprdres | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐷 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐷 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 21 | 
							
								1 2 3 19 20
							 | 
							dmdprdsplit | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  𝑆  ↔  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  { ( 0g ‘ 𝐺 ) } ) ) )  | 
						
						
							| 22 | 
							
								5 21
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( 𝐺 dom   DProd  ( 𝑆  ↾  𝐶 )  ∧  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∧  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∩  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  =  { ( 0g ‘ 𝐺 ) } ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							simp2d | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 24 | 
							
								4 19
							 | 
							lsmsubg | 
							⊢ ( ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  →  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 25 | 
							
								12 18 23 24
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 26 | 
							
								3
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↔  𝑥  ∈  ( 𝐶  ∪  𝐷 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( 𝐶  ∪  𝐷 )  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐷 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↔  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐷 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							biimpa | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐷 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑥  ∈  𝐶  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 32 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐶 ) )  | 
						
						
							| 33 | 
							
								1 8
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝑆  ↾  𝐶 ) : 𝐶 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  dom  ( 𝑆  ↾  𝐶 )  =  𝐶 )  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  𝐶 )  | 
						
						
							| 37 | 
							
								32 35 36
							 | 
							dprdub | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 𝑆  ↾  𝐶 ) ‘ 𝑥 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 38 | 
							
								31 37
							 | 
							eqsstrrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) ) )  | 
						
						
							| 39 | 
							
								4
							 | 
							lsmub1 | 
							⊢ ( ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 40 | 
							
								12 18 39
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 42 | 
							
								38 41
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑥  ∈  𝐷  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 45 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐺 dom   DProd  ( 𝑆  ↾  𝐷 ) )  | 
						
						
							| 46 | 
							
								1 14
							 | 
							fssresd | 
							⊢ ( 𝜑  →  ( 𝑆  ↾  𝐷 ) : 𝐷 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  ( 𝑆  ↾  𝐷 )  =  𝐷 )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  dom  ( 𝑆  ↾  𝐷 )  =  𝐷 )  | 
						
						
							| 49 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝐷 )  | 
						
						
							| 50 | 
							
								45 48 49
							 | 
							dprdub | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝑆  ↾  𝐷 ) ‘ 𝑥 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 51 | 
							
								44 50
							 | 
							eqsstrrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  | 
						
						
							| 52 | 
							
								4
							 | 
							lsmub2 | 
							⊢ ( ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 53 | 
							
								12 18 52
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 55 | 
							
								51 54
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 56 | 
							
								42 55
							 | 
							jaodan | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∨  𝑥  ∈  𝐷 ) )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 57 | 
							
								29 56
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 58 | 
							
								5 6 25 57
							 | 
							dprdlub | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ⊆  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  | 
						
						
							| 59 | 
							
								9
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 60 | 
							
								15
							 | 
							simprd | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  𝑆  →  ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 62 | 
							
								5 61
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 63 | 
							
								4
							 | 
							lsmlub | 
							⊢ ( ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐺  DProd  𝑆 )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝐺  DProd  𝑆 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( 𝐺  DProd  𝑆 ) )  ↔  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 64 | 
							
								12 18 62 63
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊆  ( 𝐺  DProd  𝑆 )  ∧  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) )  ⊆  ( 𝐺  DProd  𝑆 ) )  ↔  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( 𝐺  DProd  𝑆 ) ) )  | 
						
						
							| 65 | 
							
								59 60 64
							 | 
							mpbi2and | 
							⊢ ( 𝜑  →  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) )  ⊆  ( 𝐺  DProd  𝑆 ) )  | 
						
						
							| 66 | 
							
								58 65
							 | 
							eqssd | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  =  ( ( 𝐺  DProd  ( 𝑆  ↾  𝐶 ) )  ⊕  ( 𝐺  DProd  ( 𝑆  ↾  𝐷 ) ) ) )  |