Step |
Hyp |
Ref |
Expression |
1 |
|
dprdss.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑇 ) |
2 |
|
dprdss.2 |
⊢ ( 𝜑 → dom 𝑇 = 𝐼 ) |
3 |
|
dprdss.3 |
⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
dprdss.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
5 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
8 |
|
dprdgrp |
⊢ ( 𝐺 dom DProd 𝑇 → 𝐺 ∈ Grp ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
10 |
1 2
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
11 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑥 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑥 ) ) |
14 |
12 13
|
sseq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ↔ ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) ) |
15 |
14
|
rspcv |
⊢ ( 𝑥 ∈ 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) ) |
16 |
11 15
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) |
17 |
16
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ) |
18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 dom DProd 𝑇 ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → dom 𝑇 = 𝐼 ) |
20 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐼 ) |
21 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ 𝐼 ) |
22 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
23 |
18 19 20 21 22 5
|
dprdcntz |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
24 |
1 2
|
dprdf2 |
⊢ ( 𝜑 → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
26 |
25 21
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
28 |
27
|
subgss |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ) |
29 |
26 28
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑦 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑦 ) ) |
32 |
30 31
|
sseq12d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ↔ ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) ) |
33 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
34 |
32 33 21
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) |
35 |
27 5
|
cntz2ss |
⊢ ( ( ( 𝑇 ‘ 𝑦 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑇 ‘ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
36 |
29 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
37 |
23 36
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
38 |
17 37
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
39 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
40 |
27
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
41 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
42 |
39 40 41
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
43 |
|
difss |
⊢ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 |
44 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
45 |
|
ssralv |
⊢ ( ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 → ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) ) |
46 |
43 44 45
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) ) |
47 |
|
ss2iun |
⊢ ( ∀ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) ) |
48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) ⊆ ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) ) |
49 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
50 |
|
ffun |
⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑆 ) |
51 |
|
funiunfv |
⊢ ( Fun 𝑆 → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
52 |
49 50 51
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑘 ) = ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
53 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
54 |
|
ffun |
⊢ ( 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → Fun 𝑇 ) |
55 |
|
funiunfv |
⊢ ( Fun 𝑇 → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) = ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
56 |
53 54 55
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝑘 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) = ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
57 |
48 52 56
|
3sstr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
58 |
|
imassrn |
⊢ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑇 |
59 |
53
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑇 ⊆ ( SubGrp ‘ 𝐺 ) ) |
60 |
|
mresspw |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
61 |
42 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
62 |
59 61
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑇 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
63 |
58 62
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
64 |
|
sspwuni |
⊢ ( ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
65 |
63 64
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
66 |
42 7 57 65
|
mrcssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
67 |
|
ss2in |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑇 ‘ 𝑥 ) ∧ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
68 |
16 66 67
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 dom DProd 𝑇 ) |
70 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → dom 𝑇 = 𝐼 ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
72 |
69 70 71 6 7
|
dprddisj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑇 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑇 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) |
73 |
68 72
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
74 |
5 6 7 9 10 3 38 73
|
dmdprdd |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
75 |
1
|
a1d |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 → 𝐺 dom DProd 𝑇 ) ) |
76 |
|
ss2ixp |
⊢ ( ∀ 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑇 ‘ 𝑘 ) → X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ) |
77 |
11 76
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ) |
78 |
|
rabss2 |
⊢ ( X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) → { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⊆ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
79 |
|
ssrexv |
⊢ ( { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ⊆ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) → ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) |
80 |
77 78 79
|
3syl |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) → ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) |
81 |
75 80
|
anim12d |
⊢ ( 𝜑 → ( ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) → ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
82 |
|
fdm |
⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) → dom 𝑆 = 𝐼 ) |
83 |
|
eqid |
⊢ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
84 |
6 83
|
eldprd |
⊢ ( dom 𝑆 = 𝐼 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
85 |
3 82 84
|
3syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) ↔ ( 𝐺 dom DProd 𝑆 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑆 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
86 |
|
eqid |
⊢ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
87 |
6 86
|
eldprd |
⊢ ( dom 𝑇 = 𝐼 → ( 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ↔ ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
88 |
2 87
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ↔ ( 𝐺 dom DProd 𝑇 ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑘 ∈ 𝐼 ( 𝑇 ‘ 𝑘 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } 𝑎 = ( 𝐺 Σg 𝑓 ) ) ) ) |
89 |
81 85 88
|
3imtr4d |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐺 DProd 𝑆 ) → 𝑎 ∈ ( 𝐺 DProd 𝑇 ) ) ) |
90 |
89
|
ssrdv |
⊢ ( 𝜑 → ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐺 DProd 𝑇 ) ) |
91 |
74 90
|
jca |
⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ∧ ( 𝐺 DProd 𝑆 ) ⊆ ( 𝐺 DProd 𝑇 ) ) ) |