| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprdss.1 | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑇 )  | 
						
						
							| 2 | 
							
								
							 | 
							dprdss.2 | 
							⊢ ( 𝜑  →  dom  𝑇  =  𝐼 )  | 
						
						
							| 3 | 
							
								
							 | 
							dprdss.3 | 
							⊢ ( 𝜑  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dprdss.4 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							dprdgrp | 
							⊢ ( 𝐺 dom   DProd  𝑇  →  𝐺  ∈  Grp )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							dprddomcld | 
							⊢ ( 𝜑  →  𝐼  ∈  V )  | 
						
						
							| 11 | 
							
								4
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑥  →  ( 𝑆 ‘ 𝑘 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑥  →  ( 𝑇 ‘ 𝑘 )  =  ( 𝑇 ‘ 𝑥 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sseq12d | 
							⊢ ( 𝑘  =  𝑥  →  ( ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 )  ↔  ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝑇 ‘ 𝑥 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rspcv | 
							⊢ ( 𝑥  ∈  𝐼  →  ( ∀ 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝑇 ‘ 𝑥 ) ) )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							mpan9 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝑇 ‘ 𝑥 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3ad2antr1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝑇 ‘ 𝑥 ) )  | 
						
						
							| 18 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  𝐺 dom   DProd  𝑇 )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  dom  𝑇  =  𝐼 )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  𝑦  ∈  𝐼 )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ≠  𝑦 )  | 
						
						
							| 23 | 
							
								18 19 20 21 22 5
							 | 
							dprdcntz | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑇 ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) ) )  | 
						
						
							| 24 | 
							
								1 2
							 | 
							dprdf2 | 
							⊢ ( 𝜑  →  𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 26 | 
							
								25 21
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑇 ‘ 𝑦 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 28 | 
							
								27
							 | 
							subgss | 
							⊢ ( ( 𝑇 ‘ 𝑦 )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑇 ‘ 𝑦 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑇 ‘ 𝑦 )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑦  →  ( 𝑆 ‘ 𝑘 )  =  ( 𝑆 ‘ 𝑦 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑦  →  ( 𝑇 ‘ 𝑘 )  =  ( 𝑇 ‘ 𝑦 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sseq12d | 
							⊢ ( 𝑘  =  𝑦  →  ( ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 )  ↔  ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑇 ‘ 𝑦 ) ) )  | 
						
						
							| 33 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ∀ 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 34 | 
							
								32 33 21
							 | 
							rspcdva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑇 ‘ 𝑦 ) )  | 
						
						
							| 35 | 
							
								27 5
							 | 
							cntz2ss | 
							⊢ ( ( ( 𝑇 ‘ 𝑦 )  ⊆  ( Base ‘ 𝐺 )  ∧  ( 𝑆 ‘ 𝑦 )  ⊆  ( 𝑇 ‘ 𝑦 ) )  →  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) )  | 
						
						
							| 36 | 
							
								29 34 35
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑇 ‘ 𝑦 ) )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) )  | 
						
						
							| 37 | 
							
								23 36
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑇 ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) )  | 
						
						
							| 38 | 
							
								17 37
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐼  ∧  𝑥  ≠  𝑦 ) )  →  ( 𝑆 ‘ 𝑥 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) )  | 
						
						
							| 39 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐺  ∈  Grp )  | 
						
						
							| 40 | 
							
								27
							 | 
							subgacs | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							acsmre | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							difss | 
							⊢ ( 𝐼  ∖  { 𝑥 } )  ⊆  𝐼  | 
						
						
							| 44 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ∀ 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							ssralv | 
							⊢ ( ( 𝐼  ∖  { 𝑥 } )  ⊆  𝐼  →  ( ∀ 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 )  →  ∀ 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 ) ) )  | 
						
						
							| 46 | 
							
								43 44 45
							 | 
							mpsyl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ∀ 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							ss2iun | 
							⊢ ( ∀ 𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 )  →  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑆 ‘ 𝑘 )  ⊆  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑆 ‘ 𝑘 )  ⊆  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 49 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 50 | 
							
								
							 | 
							ffun | 
							⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 )  →  Fun  𝑆 )  | 
						
						
							| 51 | 
							
								
							 | 
							funiunfv | 
							⊢ ( Fun  𝑆  →  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑆 ‘ 𝑘 )  =  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 52 | 
							
								49 50 51
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑆 ‘ 𝑘 )  =  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 53 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							ffun | 
							⊢ ( 𝑇 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 )  →  Fun  𝑇 )  | 
						
						
							| 55 | 
							
								
							 | 
							funiunfv | 
							⊢ ( Fun  𝑇  →  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑇 ‘ 𝑘 )  =  ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 56 | 
							
								53 54 55
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ∪  𝑘  ∈  ( 𝐼  ∖  { 𝑥 } ) ( 𝑇 ‘ 𝑘 )  =  ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 57 | 
							
								48 52 56
							 | 
							3sstr3d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  ran  𝑇  | 
						
						
							| 59 | 
							
								53
							 | 
							frnd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ran  𝑇  ⊆  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							mresspw | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 61 | 
							
								42 60
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( SubGrp ‘ 𝐺 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ran  𝑇  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 63 | 
							
								58 62
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 64 | 
							
								
							 | 
							sspwuni | 
							⊢ ( ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  𝒫  ( Base ‘ 𝐺 )  ↔  ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 66 | 
							
								42 7 57 65
							 | 
							mrcssd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  ⊆  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							ss2in | 
							⊢ ( ( ( 𝑆 ‘ 𝑥 )  ⊆  ( 𝑇 ‘ 𝑥 )  ∧  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) )  ⊆  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  ⊆  ( ( 𝑇 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 68 | 
							
								16 66 67
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  ⊆  ( ( 𝑇 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) ) ) )  | 
						
						
							| 69 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐺 dom   DProd  𝑇 )  | 
						
						
							| 70 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  dom  𝑇  =  𝐼 )  | 
						
						
							| 71 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 72 | 
							
								69 70 71 6 7
							 | 
							dprddisj | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑇 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑇  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  =  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 73 | 
							
								68 72
							 | 
							sseqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑆 ‘ 𝑥 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( 𝑆  “  ( 𝐼  ∖  { 𝑥 } ) ) ) )  ⊆  { ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 74 | 
							
								5 6 7 9 10 3 38 73
							 | 
							dmdprdd | 
							⊢ ( 𝜑  →  𝐺 dom   DProd  𝑆 )  | 
						
						
							| 75 | 
							
								1
							 | 
							a1d | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  𝑆  →  𝐺 dom   DProd  𝑇 ) )  | 
						
						
							| 76 | 
							
								
							 | 
							ss2ixp | 
							⊢ ( ∀ 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  ( 𝑇 ‘ 𝑘 )  →  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 77 | 
							
								11 76
							 | 
							syl | 
							⊢ ( 𝜑  →  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 ) )  | 
						
						
							| 78 | 
							
								
							 | 
							rabss2 | 
							⊢ ( X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  →  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  ⊆  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  | 
						
						
							| 79 | 
							
								
							 | 
							ssrexv | 
							⊢ ( { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  ⊆  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  →  ( ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 )  →  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) ) )  | 
						
						
							| 80 | 
							
								77 78 79
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 )  →  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) ) )  | 
						
						
							| 81 | 
							
								75 80
							 | 
							anim12d | 
							⊢ ( 𝜑  →  ( ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) )  →  ( 𝐺 dom   DProd  𝑇  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 82 | 
							
								
							 | 
							fdm | 
							⊢ ( 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 )  →  dom  𝑆  =  𝐼 )  | 
						
						
							| 83 | 
							
								
							 | 
							eqid | 
							⊢ { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  =  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  | 
						
						
							| 84 | 
							
								6 83
							 | 
							eldprd | 
							⊢ ( dom  𝑆  =  𝐼  →  ( 𝑎  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 85 | 
							
								3 82 84
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( 𝑎  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑆 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							eqid | 
							⊢ { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  =  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  | 
						
						
							| 87 | 
							
								6 86
							 | 
							eldprd | 
							⊢ ( dom  𝑇  =  𝐼  →  ( 𝑎  ∈  ( 𝐺  DProd  𝑇 )  ↔  ( 𝐺 dom   DProd  𝑇  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 88 | 
							
								2 87
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑎  ∈  ( 𝐺  DProd  𝑇 )  ↔  ( 𝐺 dom   DProd  𝑇  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑘  ∈  𝐼 ( 𝑇 ‘ 𝑘 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑎  =  ( 𝐺  Σg  𝑓 ) ) ) )  | 
						
						
							| 89 | 
							
								81 85 88
							 | 
							3imtr4d | 
							⊢ ( 𝜑  →  ( 𝑎  ∈  ( 𝐺  DProd  𝑆 )  →  𝑎  ∈  ( 𝐺  DProd  𝑇 ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							ssrdv | 
							⊢ ( 𝜑  →  ( 𝐺  DProd  𝑆 )  ⊆  ( 𝐺  DProd  𝑇 ) )  | 
						
						
							| 91 | 
							
								74 90
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐺 dom   DProd  𝑆  ∧  ( 𝐺  DProd  𝑆 )  ⊆  ( 𝐺  DProd  𝑇 ) ) )  |