| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dprdssv.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ dom  𝑆  =  dom  𝑆 | 
						
							| 3 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) }  =  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } | 
						
							| 5 | 3 4 | eldprd | ⊢ ( dom  𝑆  =  dom  𝑆  →  ( 𝑥  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑥  =  ( 𝐺  Σg  𝑓 ) ) ) ) | 
						
							| 6 | 2 5 | ax-mp | ⊢ ( 𝑥  ∈  ( 𝐺  DProd  𝑆 )  ↔  ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑥  =  ( 𝐺  Σg  𝑓 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 ) | 
						
							| 8 |  | dprdgrp | ⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Grp ) | 
						
							| 9 | 8 | grpmndd | ⊢ ( 𝐺 dom   DProd  𝑆  →  𝐺  ∈  Mnd ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  𝐺  ∈  Mnd ) | 
						
							| 11 |  | reldmdprd | ⊢ Rel  dom   DProd | 
						
							| 12 | 11 | brrelex2i | ⊢ ( 𝐺 dom   DProd  𝑆  →  𝑆  ∈  V ) | 
						
							| 13 | 12 | dmexd | ⊢ ( 𝐺 dom   DProd  𝑆  →  dom  𝑆  ∈  V ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  dom  𝑆  ∈  V ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  𝐺 dom   DProd  𝑆 ) | 
						
							| 16 |  | eqidd | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  dom  𝑆  =  dom  𝑆 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } ) | 
						
							| 18 | 4 15 16 17 1 | dprdff | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  𝑓 : dom  𝑆 ⟶ 𝐵 ) | 
						
							| 19 | 4 15 16 17 7 | dprdfcntz | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  ran  𝑓  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ran  𝑓 ) ) | 
						
							| 20 | 4 15 16 17 | dprdffsupp | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  𝑓  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 21 | 1 3 7 10 14 18 19 20 | gsumzcl | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  ( 𝐺  Σg  𝑓 )  ∈  𝐵 ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐺  Σg  𝑓 )  →  ( 𝑥  ∈  𝐵  ↔  ( 𝐺  Σg  𝑓 )  ∈  𝐵 ) ) | 
						
							| 23 | 21 22 | syl5ibrcom | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } )  →  ( 𝑥  =  ( 𝐺  Σg  𝑓 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 24 | 23 | rexlimdva | ⊢ ( 𝐺 dom   DProd  𝑆  →  ( ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑥  =  ( 𝐺  Σg  𝑓 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝐺 dom   DProd  𝑆  ∧  ∃ 𝑓  ∈  { ℎ  ∈  X 𝑖  ∈  dom  𝑆 ( 𝑆 ‘ 𝑖 )  ∣  ℎ  finSupp  ( 0g ‘ 𝐺 ) } 𝑥  =  ( 𝐺  Σg  𝑓 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 26 | 6 25 | sylbi | ⊢ ( 𝑥  ∈  ( 𝐺  DProd  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 27 | 26 | ssriv | ⊢ ( 𝐺  DProd  𝑆 )  ⊆  𝐵 |