Metamath Proof Explorer


Theorem dprdub

Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdub.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdub.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dprdub.3 ( 𝜑𝑋𝐼 )
Assertion dprdub ( 𝜑 → ( 𝑆𝑋 ) ⊆ ( 𝐺 DProd 𝑆 ) )

Proof

Step Hyp Ref Expression
1 dprdub.1 ( 𝜑𝐺 dom DProd 𝑆 )
2 dprdub.2 ( 𝜑 → dom 𝑆 = 𝐼 )
3 dprdub.3 ( 𝜑𝑋𝐼 )
4 eqid ( 0g𝐺 ) = ( 0g𝐺 )
5 eqid { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) }
6 1 adantr ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → 𝐺 dom DProd 𝑆 )
7 2 adantr ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → dom 𝑆 = 𝐼 )
8 3 adantr ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → 𝑋𝐼 )
9 simpr ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → 𝑥 ∈ ( 𝑆𝑋 ) )
10 eqid ( 𝑛𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g𝐺 ) ) ) = ( 𝑛𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g𝐺 ) ) )
11 4 5 6 7 8 9 10 dprdfid ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → ( ( 𝑛𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g𝐺 ) ) ) ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } ∧ ( 𝐺 Σg ( 𝑛𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g𝐺 ) ) ) ) = 𝑥 ) )
12 11 simprd ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → ( 𝐺 Σg ( 𝑛𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g𝐺 ) ) ) ) = 𝑥 )
13 11 simpld ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → ( 𝑛𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g𝐺 ) ) ) ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp ( 0g𝐺 ) } )
14 4 5 6 7 13 eldprdi ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → ( 𝐺 Σg ( 𝑛𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g𝐺 ) ) ) ) ∈ ( 𝐺 DProd 𝑆 ) )
15 12 14 eqeltrrd ( ( 𝜑𝑥 ∈ ( 𝑆𝑋 ) ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) )
16 15 ex ( 𝜑 → ( 𝑥 ∈ ( 𝑆𝑋 ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ) )
17 16 ssrdv ( 𝜑 → ( 𝑆𝑋 ) ⊆ ( 𝐺 DProd 𝑆 ) )