Step |
Hyp |
Ref |
Expression |
1 |
|
dprdub.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
2 |
|
dprdub.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
3 |
|
dprdub.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝐺 dom DProd 𝑆 ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → dom 𝑆 = 𝐼 ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝑋 ∈ 𝐼 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) |
10 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) |
11 |
4 5 6 7 8 9 10
|
dprdfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ) = 𝑥 ) ) |
12 |
11
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ) = 𝑥 ) |
13 |
11
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝐺 ) } ) |
14 |
4 5 6 7 13
|
eldprdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝑥 , ( 0g ‘ 𝐺 ) ) ) ) ∈ ( 𝐺 DProd 𝑆 ) ) |
15 |
12 14
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ‘ 𝑋 ) → 𝑥 ∈ ( 𝐺 DProd 𝑆 ) ) ) |
17 |
16
|
ssrdv |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝐺 DProd 𝑆 ) ) |