Metamath Proof Explorer


Theorem dprdw

Description: The property of being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
dprdff.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdff.2 ( 𝜑 → dom 𝑆 = 𝐼 )
Assertion dprdw ( 𝜑 → ( 𝐹𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ∧ 𝐹 finSupp 0 ) ) )

Proof

Step Hyp Ref Expression
1 dprdff.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
2 dprdff.1 ( 𝜑𝐺 dom DProd 𝑆 )
3 dprdff.2 ( 𝜑 → dom 𝑆 = 𝐼 )
4 elex ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) → 𝐹 ∈ V )
5 4 a1i ( 𝜑 → ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) → 𝐹 ∈ V ) )
6 2 3 dprddomcld ( 𝜑𝐼 ∈ V )
7 fnex ( ( 𝐹 Fn 𝐼𝐼 ∈ V ) → 𝐹 ∈ V )
8 7 expcom ( 𝐼 ∈ V → ( 𝐹 Fn 𝐼𝐹 ∈ V ) )
9 6 8 syl ( 𝜑 → ( 𝐹 Fn 𝐼𝐹 ∈ V ) )
10 9 adantrd ( 𝜑 → ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) → 𝐹 ∈ V ) )
11 fveq2 ( 𝑖 = 𝑥 → ( 𝑆𝑖 ) = ( 𝑆𝑥 ) )
12 11 cbvixpv X 𝑖𝐼 ( 𝑆𝑖 ) = X 𝑥𝐼 ( 𝑆𝑥 )
13 12 eleq2i ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) ↔ 𝐹X 𝑥𝐼 ( 𝑆𝑥 ) )
14 elixp2 ( 𝐹X 𝑥𝐼 ( 𝑆𝑥 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) )
15 3anass ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ) )
16 13 14 15 3bitri ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ) )
17 16 baib ( 𝐹 ∈ V → ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ) )
18 17 a1i ( 𝜑 → ( 𝐹 ∈ V → ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ) ) )
19 5 10 18 pm5.21ndd ( 𝜑 → ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ) )
20 19 anbi1d ( 𝜑 → ( ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) ∧ 𝐹 finSupp 0 ) ↔ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ∧ 𝐹 finSupp 0 ) ) )
21 breq1 ( = 𝐹 → ( finSupp 0𝐹 finSupp 0 ) )
22 21 1 elrab2 ( 𝐹𝑊 ↔ ( 𝐹X 𝑖𝐼 ( 𝑆𝑖 ) ∧ 𝐹 finSupp 0 ) )
23 df-3an ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ∧ 𝐹 finSupp 0 ) ↔ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ) ∧ 𝐹 finSupp 0 ) )
24 20 22 23 3bitr4g ( 𝜑 → ( 𝐹𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ ( 𝑆𝑥 ) ∧ 𝐹 finSupp 0 ) ) )