| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdff.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
| 2 |
|
dprdff.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| 3 |
|
dprdff.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 4 |
|
elex |
⊢ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) → 𝐹 ∈ V ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) → 𝐹 ∈ V ) ) |
| 6 |
2 3
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 7 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐼 ∈ V ) → 𝐹 ∈ V ) |
| 8 |
7
|
expcom |
⊢ ( 𝐼 ∈ V → ( 𝐹 Fn 𝐼 → 𝐹 ∈ V ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐼 → 𝐹 ∈ V ) ) |
| 10 |
9
|
adantrd |
⊢ ( 𝜑 → ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) → 𝐹 ∈ V ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑖 = 𝑥 → ( 𝑆 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 12 |
11
|
cbvixpv |
⊢ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) = X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) |
| 13 |
12
|
eleq2i |
⊢ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ 𝐹 ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ) |
| 14 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) |
| 15 |
|
3anass |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 16 |
13 14 15
|
3bitri |
⊢ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 17 |
16
|
baib |
⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ∈ V → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) ) |
| 19 |
5 10 18
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 20 |
19
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∧ 𝐹 finSupp 0 ) ↔ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ∧ 𝐹 finSupp 0 ) ) ) |
| 21 |
|
breq1 |
⊢ ( ℎ = 𝐹 → ( ℎ finSupp 0 ↔ 𝐹 finSupp 0 ) ) |
| 22 |
21 1
|
elrab2 |
⊢ ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∧ 𝐹 finSupp 0 ) ) |
| 23 |
|
df-3an |
⊢ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ↔ ( ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) ∧ 𝐹 finSupp 0 ) ) |
| 24 |
20 22 23
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) ) |