Metamath Proof Explorer


Theorem dprdwd

Description: A mapping being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Hypotheses dprdff.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
dprdff.1 ( 𝜑𝐺 dom DProd 𝑆 )
dprdff.2 ( 𝜑 → dom 𝑆 = 𝐼 )
dprdwd.3 ( ( 𝜑𝑥𝐼 ) → 𝐴 ∈ ( 𝑆𝑥 ) )
dprdwd.4 ( 𝜑 → ( 𝑥𝐼𝐴 ) finSupp 0 )
Assertion dprdwd ( 𝜑 → ( 𝑥𝐼𝐴 ) ∈ 𝑊 )

Proof

Step Hyp Ref Expression
1 dprdff.w 𝑊 = { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 }
2 dprdff.1 ( 𝜑𝐺 dom DProd 𝑆 )
3 dprdff.2 ( 𝜑 → dom 𝑆 = 𝐼 )
4 dprdwd.3 ( ( 𝜑𝑥𝐼 ) → 𝐴 ∈ ( 𝑆𝑥 ) )
5 dprdwd.4 ( 𝜑 → ( 𝑥𝐼𝐴 ) finSupp 0 )
6 breq1 ( = ( 𝑥𝐼𝐴 ) → ( finSupp 0 ↔ ( 𝑥𝐼𝐴 ) finSupp 0 ) )
7 4 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 𝐴 ∈ ( 𝑆𝑥 ) )
8 2 3 dprddomcld ( 𝜑𝐼 ∈ V )
9 mptelixpg ( 𝐼 ∈ V → ( ( 𝑥𝐼𝐴 ) ∈ X 𝑥𝐼 ( 𝑆𝑥 ) ↔ ∀ 𝑥𝐼 𝐴 ∈ ( 𝑆𝑥 ) ) )
10 8 9 syl ( 𝜑 → ( ( 𝑥𝐼𝐴 ) ∈ X 𝑥𝐼 ( 𝑆𝑥 ) ↔ ∀ 𝑥𝐼 𝐴 ∈ ( 𝑆𝑥 ) ) )
11 7 10 mpbird ( 𝜑 → ( 𝑥𝐼𝐴 ) ∈ X 𝑥𝐼 ( 𝑆𝑥 ) )
12 fveq2 ( 𝑥 = 𝑖 → ( 𝑆𝑥 ) = ( 𝑆𝑖 ) )
13 12 cbvixpv X 𝑥𝐼 ( 𝑆𝑥 ) = X 𝑖𝐼 ( 𝑆𝑖 )
14 11 13 eleqtrdi ( 𝜑 → ( 𝑥𝐼𝐴 ) ∈ X 𝑖𝐼 ( 𝑆𝑖 ) )
15 6 14 5 elrabd ( 𝜑 → ( 𝑥𝐼𝐴 ) ∈ { X 𝑖𝐼 ( 𝑆𝑖 ) ∣ finSupp 0 } )
16 15 1 eleqtrrdi ( 𝜑 → ( 𝑥𝐼𝐴 ) ∈ 𝑊 )