Step |
Hyp |
Ref |
Expression |
1 |
|
dprdff.w |
⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } |
2 |
|
dprdff.1 |
⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
3 |
|
dprdff.2 |
⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
4 |
|
dprdwd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) |
5 |
|
dprdwd.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) finSupp 0 ) |
6 |
|
breq1 |
⊢ ( ℎ = ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) → ( ℎ finSupp 0 ↔ ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) finSupp 0 ) ) |
7 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) |
8 |
2 3
|
dprddomcld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
9 |
|
mptelixpg |
⊢ ( 𝐼 ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) ) |
11 |
7 10
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑖 ) ) |
13 |
12
|
cbvixpv |
⊢ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) = X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) |
14 |
11 13
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ) |
15 |
6 14 5
|
elrabd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
16 |
15 1
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ 𝑊 ) |