| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dprd0.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( Cntz ‘ 𝐺 )  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  𝐺  ∈  Grp )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  𝐼  ∈  𝑉 )  | 
						
						
							| 6 | 
							
								1
							 | 
							0subg | 
							⊢ ( 𝐺  ∈  Grp  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑥  ∈  𝐼 )  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							fmpttd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  ( 𝑥  ∈  𝐼  ↦  {  0  } ) : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 10 | 
							
								9 1
							 | 
							grpidcl | 
							⊢ ( 𝐺  ∈  Grp  →   0   ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →   0   ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							snssd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  {  0  }  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 13 | 
							
								9 2
							 | 
							cntzsubg | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  {  0  }  ⊆  ( Base ‘ 𝐺 ) )  →  ( ( Cntz ‘ 𝐺 ) ‘ {  0  } )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syldan | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  ( ( Cntz ‘ 𝐺 ) ‘ {  0  } )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							subg0cl | 
							⊢ ( ( ( Cntz ‘ 𝐺 ) ‘ {  0  } )  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  ( ( Cntz ‘ 𝐺 ) ‘ {  0  } ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →   0   ∈  ( ( Cntz ‘ 𝐺 ) ‘ {  0  } ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							snssd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  {  0  }  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ {  0  } ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼  ∧  𝑦  ≠  𝑧 ) )  →  {  0  }  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ {  0  } ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼  ∧  𝑦  ≠  𝑧 ) )  →  𝑦  ∈  𝐼 )  | 
						
						
							| 20 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑥  =  𝑦  →  {  0  }  =  {  0  } )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐼  ↦  {  0  } )  =  ( 𝑥  ∈  𝐼  ↦  {  0  } )  | 
						
						
							| 22 | 
							
								
							 | 
							snex | 
							⊢ {  0  }  ∈  V  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							fvmpt3i | 
							⊢ ( 𝑦  ∈  𝐼  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  =  {  0  } )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							syl | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼  ∧  𝑦  ≠  𝑧 ) )  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  =  {  0  } )  | 
						
						
							| 25 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼  ∧  𝑦  ≠  𝑧 ) )  →  𝑧  ∈  𝐼 )  | 
						
						
							| 26 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑥  =  𝑧  →  {  0  }  =  {  0  } )  | 
						
						
							| 27 | 
							
								26 21 22
							 | 
							fvmpt3i | 
							⊢ ( 𝑧  ∈  𝐼  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑧 )  =  {  0  } )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							syl | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼  ∧  𝑦  ≠  𝑧 ) )  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑧 )  =  {  0  } )  | 
						
						
							| 29 | 
							
								28
							 | 
							fveq2d | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼  ∧  𝑦  ≠  𝑧 ) )  →  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑧 ) )  =  ( ( Cntz ‘ 𝐺 ) ‘ {  0  } ) )  | 
						
						
							| 30 | 
							
								18 24 29
							 | 
							3sstr4d | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  𝐼  ∧  𝑦  ≠  𝑧 ) )  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ⊆  ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑧 ) ) )  | 
						
						
							| 31 | 
							
								23
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  =  {  0  } )  | 
						
						
							| 32 | 
							
								31
							 | 
							ineq1d | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  =  ( {  0  }  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) ) )  | 
						
						
							| 33 | 
							
								9
							 | 
							subgacs | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							acsmred | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							imassrn | 
							⊢ ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) )  ⊆  ran  ( 𝑥  ∈  𝐼  ↦  {  0  } )  | 
						
						
							| 37 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑥  ∈  𝐼  ↦  {  0  } ) : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							frnd | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ran  ( 𝑥  ∈  𝐼  ↦  {  0  } )  ⊆  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							mresspw | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 40 | 
							
								35 39
							 | 
							syl | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( SubGrp ‘ 𝐺 )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							sstrd | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ran  ( 𝑥  ∈  𝐼  ↦  {  0  } )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 42 | 
							
								36 41
							 | 
							sstrid | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) )  ⊆  𝒫  ( Base ‘ 𝐺 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							sspwuni | 
							⊢ ( ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) )  ⊆  𝒫  ( Base ‘ 𝐺 )  ↔  ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							sylib | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) )  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 45 | 
							
								3
							 | 
							mrccl | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) )  ⊆  ( Base ‘ 𝐺 ) )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 46 | 
							
								35 44 45
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 47 | 
							
								1
							 | 
							subg0cl | 
							⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) )  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →   0   ∈  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							snssd | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  {  0  }  ⊆  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							dfss2 | 
							⊢ ( {  0  }  ⊆  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) )  ↔  ( {  0  }  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  =  {  0  } )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							sylib | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( {  0  }  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  =  {  0  } )  | 
						
						
							| 52 | 
							
								32 51
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  =  {  0  } )  | 
						
						
							| 53 | 
							
								
							 | 
							eqimss | 
							⊢ ( ( ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  =  {  0  }  →  ( ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  ⊆  {  0  } )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							syl | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ∩  ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪  ( ( 𝑥  ∈  𝐼  ↦  {  0  } )  “  ( 𝐼  ∖  { 𝑦 } ) ) ) )  ⊆  {  0  } )  | 
						
						
							| 55 | 
							
								2 1 3 4 5 8 30 54
							 | 
							dmdprdd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  𝐺 dom   DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) )  | 
						
						
							| 56 | 
							
								21 7
							 | 
							dmmptd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  dom  ( 𝑥  ∈  𝐼  ↦  {  0  } )  =  𝐼 )  | 
						
						
							| 57 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							eqimss | 
							⊢ ( ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  =  {  0  }  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ⊆  {  0  } )  | 
						
						
							| 59 | 
							
								31 58
							 | 
							syl | 
							⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝐼  ↦  {  0  } ) ‘ 𝑦 )  ⊆  {  0  } )  | 
						
						
							| 60 | 
							
								55 56 57 59
							 | 
							dprdlub | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) )  ⊆  {  0  } )  | 
						
						
							| 61 | 
							
								
							 | 
							dprdsubg | 
							⊢ ( 𝐺 dom   DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } )  →  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 62 | 
							
								1
							 | 
							subg0cl | 
							⊢ ( ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) )  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) ) )  | 
						
						
							| 63 | 
							
								55 61 62
							 | 
							3syl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →   0   ∈  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							snssd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  {  0  }  ⊆  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) ) )  | 
						
						
							| 65 | 
							
								60 64
							 | 
							eqssd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) )  =  {  0  } )  | 
						
						
							| 66 | 
							
								55 65
							 | 
							jca | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  ( 𝐺 dom   DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } )  ∧  ( 𝐺  DProd  ( 𝑥  ∈  𝐼  ↦  {  0  } ) )  =  {  0  } ) )  |