Step |
Hyp |
Ref |
Expression |
1 |
|
dprd0.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝐺 ∈ Grp ) |
5 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) |
6 |
1
|
0subg |
⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
8 |
7
|
fmpttd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ { 0 } ) : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
10 |
9 1
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ( Base ‘ 𝐺 ) ) |
12 |
11
|
snssd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ⊆ ( Base ‘ 𝐺 ) ) |
13 |
9 2
|
cntzsubg |
⊢ ( ( 𝐺 ∈ Grp ∧ { 0 } ⊆ ( Base ‘ 𝐺 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
14 |
12 13
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
15 |
1
|
subg0cl |
⊢ ( ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
17 |
16
|
snssd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → { 0 } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
19 |
|
simpr1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑦 ∈ 𝐼 ) |
20 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → { 0 } = { 0 } ) |
21 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ { 0 } ) |
22 |
|
snex |
⊢ { 0 } ∈ V |
23 |
20 21 22
|
fvmpt3i |
⊢ ( 𝑦 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } ) |
24 |
19 23
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } ) |
25 |
|
simpr2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑧 ∈ 𝐼 ) |
26 |
|
eqidd |
⊢ ( 𝑥 = 𝑧 → { 0 } = { 0 } ) |
27 |
26 21 22
|
fvmpt3i |
⊢ ( 𝑧 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) = { 0 } ) |
28 |
25 27
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) = { 0 } ) |
29 |
28
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) ) = ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
30 |
18 24 29
|
3sstr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) ) ) |
31 |
23
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } ) |
32 |
31
|
ineq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = ( { 0 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) ) |
33 |
9
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
35 |
34
|
acsmred |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
36 |
|
imassrn |
⊢ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ran ( 𝑥 ∈ 𝐼 ↦ { 0 } ) |
37 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐼 ↦ { 0 } ) : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
38 |
37
|
frnd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ran ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ⊆ ( SubGrp ‘ 𝐺 ) ) |
39 |
|
mresspw |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
40 |
35 39
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
41 |
38 40
|
sstrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ran ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
42 |
36 41
|
sstrid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
43 |
|
sspwuni |
⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
44 |
42 43
|
sylib |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
45 |
3
|
mrccl |
⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
46 |
35 44 45
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
47 |
1
|
subg0cl |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) |
49 |
48
|
snssd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → { 0 } ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) |
50 |
|
df-ss |
⊢ ( { 0 } ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ↔ ( { 0 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } ) |
51 |
49 50
|
sylib |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( { 0 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } ) |
52 |
32 51
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } ) |
53 |
|
eqimss |
⊢ ( ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) ⊆ { 0 } ) |
54 |
52 53
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) ⊆ { 0 } ) |
55 |
2 1 3 4 5 8 30 54
|
dmdprdd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝐺 dom DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) |
56 |
21 7
|
dmmptd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐼 ↦ { 0 } ) = 𝐼 ) |
57 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
58 |
|
eqimss |
⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ⊆ { 0 } ) |
59 |
31 58
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ⊆ { 0 } ) |
60 |
55 56 57 59
|
dprdlub |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ⊆ { 0 } ) |
61 |
|
dprdsubg |
⊢ ( 𝐺 dom DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) → ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
62 |
1
|
subg0cl |
⊢ ( ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ) |
63 |
55 61 62
|
3syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ) |
64 |
63
|
snssd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ⊆ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ) |
65 |
60 64
|
eqssd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) = { 0 } ) |
66 |
55 65
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝐺 dom DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ∧ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) = { 0 } ) ) |