Metamath Proof Explorer


Theorem dpval3

Description: Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpval2.a 𝐴 ∈ ℕ0
dpval2.b 𝐵 ∈ ℝ
Assertion dpval3 ( 𝐴 . 𝐵 ) = 𝐴 𝐵

Proof

Step Hyp Ref Expression
1 dpval2.a 𝐴 ∈ ℕ0
2 dpval2.b 𝐵 ∈ ℝ
3 1 2 dpval2 ( 𝐴 . 𝐵 ) = ( 𝐴 + ( 𝐵 / 1 0 ) )
4 df-dp2 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / 1 0 ) )
5 3 4 eqtr4i ( 𝐴 . 𝐵 ) = 𝐴 𝐵