Metamath Proof Explorer
Description: Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
dpval2.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
dpval2.b |
⊢ 𝐵 ∈ ℝ |
|
Assertion |
dpval3 |
⊢ ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dpval2.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
dpval2.b |
⊢ 𝐵 ∈ ℝ |
3 |
1 2
|
dpval2 |
⊢ ( 𝐴 . 𝐵 ) = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
4 |
|
df-dp2 |
⊢ _ 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
5 |
3 4
|
eqtr4i |
⊢ ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 |