Metamath Proof Explorer


Theorem dpval3rp

Description: Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpval3rp.a 𝐴 ∈ ℕ0
dpval3rp.b 𝐵 ∈ ℝ+
Assertion dpval3rp ( 𝐴 . 𝐵 ) = 𝐴 𝐵

Proof

Step Hyp Ref Expression
1 dpval3rp.a 𝐴 ∈ ℕ0
2 dpval3rp.b 𝐵 ∈ ℝ+
3 rpre ( 𝐵 ∈ ℝ+𝐵 ∈ ℝ )
4 2 3 ax-mp 𝐵 ∈ ℝ
5 1 4 dpval3 ( 𝐴 . 𝐵 ) = 𝐴 𝐵