Step |
Hyp |
Ref |
Expression |
1 |
|
dral1-o.1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 ) |
3 |
1
|
biimpd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) |
4 |
2 3
|
alimdh |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
5 |
|
ax-c11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜓 ) ) |
6 |
4 5
|
syld |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
7 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) |
8 |
1
|
biimprd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) |
9 |
7 8
|
alimdh |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜓 → ∀ 𝑦 𝜑 ) ) |
10 |
|
ax-c11 |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 𝜑 ) ) |
11 |
10
|
aecoms-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 𝜑 ) ) |
12 |
9 11
|
syld |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) ) |
13 |
6 12
|
impbid |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |