| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dral1-o.1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑥 𝑥 = 𝑦 ) |
| 3 |
1
|
biimpd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) |
| 4 |
2 3
|
alimdh |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 5 |
|
ax-c11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜓 ) ) |
| 6 |
4 5
|
syld |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 7 |
|
hbae-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ∀ 𝑥 𝑥 = 𝑦 ) |
| 8 |
1
|
biimprd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) |
| 9 |
7 8
|
alimdh |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜓 → ∀ 𝑦 𝜑 ) ) |
| 10 |
|
ax-c11 |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 11 |
10
|
aecoms-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 12 |
9 11
|
syld |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 13 |
6 12
|
impbid |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |