Description: Obsolete version of drnfc2 as of 22-Sep-2024. (Contributed by Mario Carneiro, 8-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | drnfc1.1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
Assertion | drnfc2OLD | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑧 𝐴 ↔ Ⅎ 𝑧 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnfc1.1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
2 | 1 | eleq2d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵 ) ) |
3 | 2 | drnf2 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑧 𝑤 ∈ 𝐴 ↔ Ⅎ 𝑧 𝑤 ∈ 𝐵 ) ) |
4 | 3 | albidv | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑤 Ⅎ 𝑧 𝑤 ∈ 𝐴 ↔ ∀ 𝑤 Ⅎ 𝑧 𝑤 ∈ 𝐵 ) ) |
5 | df-nfc | ⊢ ( Ⅎ 𝑧 𝐴 ↔ ∀ 𝑤 Ⅎ 𝑧 𝑤 ∈ 𝐴 ) | |
6 | df-nfc | ⊢ ( Ⅎ 𝑧 𝐵 ↔ ∀ 𝑤 Ⅎ 𝑧 𝑤 ∈ 𝐵 ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑧 𝐴 ↔ Ⅎ 𝑧 𝐵 ) ) |