Step |
Hyp |
Ref |
Expression |
1 |
|
drngid.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngid.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngid.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
drngid.g |
⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) |
5 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
6 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) |
8 |
6 7 3
|
unitgrpid |
⊢ ( 𝑅 ∈ Ring → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) ) |
9 |
5 8
|
syl |
⊢ ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) ) |
10 |
1 6 2
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) ) |
11 |
10
|
simprbi |
⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
13 |
12 4
|
eqtr4di |
⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = 𝐺 ) |
14 |
13
|
fveq2d |
⊢ ( 𝑅 ∈ DivRing → ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) = ( 0g ‘ 𝐺 ) ) |
15 |
9 14
|
eqtrd |
⊢ ( 𝑅 ∈ DivRing → 1 = ( 0g ‘ 𝐺 ) ) |