| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngid2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | drngid2.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | drngid2.o | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | drngid2.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | df-3an | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝐼  ≠   0   ∧  ( 𝐼  ·  𝐼 )  =  𝐼 )  ↔  ( ( 𝐼  ∈  𝐵  ∧  𝐼  ≠   0  )  ∧  ( 𝐼  ·  𝐼 )  =  𝐼 ) ) | 
						
							| 6 |  | eldifsn | ⊢ ( 𝐼  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( 𝐼  ∈  𝐵  ∧  𝐼  ≠   0  ) ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( 𝐼  ∈  ( 𝐵  ∖  {  0  } )  ∧  ( 𝐼  ·  𝐼 )  =  𝐼 )  ↔  ( ( 𝐼  ∈  𝐵  ∧  𝐼  ≠   0  )  ∧  ( 𝐼  ·  𝐼 )  =  𝐼 ) ) | 
						
							| 8 | 5 7 | bitr4i | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝐼  ≠   0   ∧  ( 𝐼  ·  𝐼 )  =  𝐼 )  ↔  ( 𝐼  ∈  ( 𝐵  ∖  {  0  } )  ∧  ( 𝐼  ·  𝐼 )  =  𝐼 ) ) | 
						
							| 9 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) )  =  ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 10 | 1 3 9 | drngmgp | ⊢ ( 𝑅  ∈  DivRing  →  ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  Grp ) | 
						
							| 11 |  | difss | ⊢ ( 𝐵  ∖  {  0  } )  ⊆  𝐵 | 
						
							| 12 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 13 | 12 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 14 | 9 13 | ressbas2 | ⊢ ( ( 𝐵  ∖  {  0  } )  ⊆  𝐵  →  ( 𝐵  ∖  {  0  } )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) ) | 
						
							| 15 | 11 14 | ax-mp | ⊢ ( 𝐵  ∖  {  0  } )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) | 
						
							| 16 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 17 |  | difexg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∖  {  0  } )  ∈  V ) | 
						
							| 18 | 12 2 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 19 | 9 18 | ressplusg | ⊢ ( ( 𝐵  ∖  {  0  } )  ∈  V  →   ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) ) | 
						
							| 20 | 16 17 19 | mp2b | ⊢  ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) | 
						
							| 22 | 15 20 21 | isgrpid2 | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  Grp  →  ( ( 𝐼  ∈  ( 𝐵  ∖  {  0  } )  ∧  ( 𝐼  ·  𝐼 )  =  𝐼 )  ↔  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) )  =  𝐼 ) ) | 
						
							| 23 | 10 22 | syl | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝐼  ∈  ( 𝐵  ∖  {  0  } )  ∧  ( 𝐼  ·  𝐼 )  =  𝐼 )  ↔  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) )  =  𝐼 ) ) | 
						
							| 24 | 8 23 | bitrid | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝐼  ∈  𝐵  ∧  𝐼  ≠   0   ∧  ( 𝐼  ·  𝐼 )  =  𝐼 )  ↔  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) )  =  𝐼 ) ) | 
						
							| 25 | 1 3 4 9 | drngid | ⊢ ( 𝑅  ∈  DivRing  →   1   =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝑅  ∈  DivRing  →  (  1   =  𝐼  ↔  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) )  =  𝐼 ) ) | 
						
							| 27 | 24 26 | bitr4d | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝐼  ∈  𝐵  ∧  𝐼  ≠   0   ∧  ( 𝐼  ·  𝐼 )  =  𝐼 )  ↔   1   =  𝐼 ) ) |