Step |
Hyp |
Ref |
Expression |
1 |
|
invrcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
invrcl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
invrcl.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
5 |
1 4 2
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
6 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
7 |
4 3 1
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
8 |
7
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ) |
9 |
6 8
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ) |
10 |
5 9
|
sylbird |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ) |
11 |
10
|
3impib |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |