Metamath Proof Explorer
		
		
		
		Description:  Closure of the multiplicative inverse in a division ring.  ( reccld analog).  (Contributed by SN, 14-Aug-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | invrcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
					
						|  |  | invrcl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
					
						|  |  | invrcl.i | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
					
						|  |  | drnginvrcld.r | ⊢ ( 𝜑  →  𝑅  ∈  DivRing ) | 
					
						|  |  | drnginvrcld.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
					
						|  |  | drnginvrcld.1 | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
				
					|  | Assertion | drnginvrcld | ⊢  ( 𝜑  →  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invrcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | invrcl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | invrcl.i | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
						
							| 4 |  | drnginvrcld.r | ⊢ ( 𝜑  →  𝑅  ∈  DivRing ) | 
						
							| 5 |  | drnginvrcld.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | drnginvrcld.1 | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 7 | 1 2 3 | drnginvrcl | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 ) |