Metamath Proof Explorer


Theorem drnginvrn0

Description: The multiplicative inverse in a division ring is nonzero. ( recne0 analog). (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses invrcl.b 𝐵 = ( Base ‘ 𝑅 )
invrcl.z 0 = ( 0g𝑅 )
invrcl.i 𝐼 = ( invr𝑅 )
Assertion drnginvrn0 ( ( 𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ( 𝐼𝑋 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 invrcl.b 𝐵 = ( Base ‘ 𝑅 )
2 invrcl.z 0 = ( 0g𝑅 )
3 invrcl.i 𝐼 = ( invr𝑅 )
4 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
5 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
6 5 3 unitinvcl ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼𝑋 ) ∈ ( Unit ‘ 𝑅 ) )
7 6 ex ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) )
8 4 7 syl ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) )
9 1 5 2 drngunit ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋𝐵𝑋0 ) ) )
10 1 5 2 drngunit ( 𝑅 ∈ DivRing → ( ( 𝐼𝑋 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼𝑋 ) ∈ 𝐵 ∧ ( 𝐼𝑋 ) ≠ 0 ) ) )
11 8 9 10 3imtr3d ( 𝑅 ∈ DivRing → ( ( 𝑋𝐵𝑋0 ) → ( ( 𝐼𝑋 ) ∈ 𝐵 ∧ ( 𝐼𝑋 ) ≠ 0 ) ) )
12 11 3impib ( ( 𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ( ( 𝐼𝑋 ) ∈ 𝐵 ∧ ( 𝐼𝑋 ) ≠ 0 ) )
13 12 simprd ( ( 𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ( 𝐼𝑋 ) ≠ 0 )