| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invrcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | invrcl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | invrcl.i | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
						
							| 4 |  | drngring | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 6 | 5 3 | unitinvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝐼 ‘ 𝑋 )  ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑋  ∈  ( Unit ‘ 𝑅 )  →  ( 𝐼 ‘ 𝑋 )  ∈  ( Unit ‘ 𝑅 ) ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝑅  ∈  DivRing  →  ( 𝑋  ∈  ( Unit ‘ 𝑅 )  →  ( 𝐼 ‘ 𝑋 )  ∈  ( Unit ‘ 𝑅 ) ) ) | 
						
							| 9 | 1 5 2 | drngunit | ⊢ ( 𝑅  ∈  DivRing  →  ( 𝑋  ∈  ( Unit ‘ 𝑅 )  ↔  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) ) ) | 
						
							| 10 | 1 5 2 | drngunit | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝐼 ‘ 𝑋 )  ∈  ( Unit ‘ 𝑅 )  ↔  ( ( 𝐼 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐼 ‘ 𝑋 )  ≠   0  ) ) ) | 
						
							| 11 | 8 9 10 | 3imtr3d | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( ( 𝐼 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐼 ‘ 𝑋 )  ≠   0  ) ) ) | 
						
							| 12 | 11 | 3impib | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( ( 𝐼 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐼 ‘ 𝑋 )  ≠   0  ) ) | 
						
							| 13 | 12 | simprd | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( 𝐼 ‘ 𝑋 )  ≠   0  ) |