Step |
Hyp |
Ref |
Expression |
1 |
|
invrcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
invrcl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
invrcl.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
4 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
5 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
6 |
5 3
|
unitinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) |
7 |
6
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
9 |
1 5 2
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
10 |
1 5 2
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ≠ 0 ) ) ) |
11 |
8 9 10
|
3imtr3d |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ≠ 0 ) ) ) |
12 |
11
|
3impib |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ≠ 0 ) ) |
13 |
12
|
simprd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |