| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drnginvrl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | drnginvrl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | drnginvrl.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | drnginvrl.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | drnginvrl.i | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 7 | 1 6 2 | drngunit | ⊢ ( 𝑅  ∈  DivRing  →  ( 𝑋  ∈  ( Unit ‘ 𝑅 )  ↔  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) ) ) | 
						
							| 8 |  | drngring | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Ring ) | 
						
							| 9 | 6 5 3 4 | unitrinv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋  ·  ( 𝐼 ‘ 𝑋 ) )  =   1  ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑋  ∈  ( Unit ‘ 𝑅 )  →  ( 𝑋  ·  ( 𝐼 ‘ 𝑋 ) )  =   1  ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝑅  ∈  DivRing  →  ( 𝑋  ∈  ( Unit ‘ 𝑅 )  →  ( 𝑋  ·  ( 𝐼 ‘ 𝑋 ) )  =   1  ) ) | 
						
							| 12 | 7 11 | sylbird | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( 𝑋  ·  ( 𝐼 ‘ 𝑋 ) )  =   1  ) ) | 
						
							| 13 | 12 | 3impib | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ( 𝑋  ·  ( 𝐼 ‘ 𝑋 ) )  =   1  ) |