Step |
Hyp |
Ref |
Expression |
1 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
5 |
2 3 4
|
drngnidl |
⊢ ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) |
6 |
|
eqid |
⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) |
7 |
6 3
|
lpi0 |
⊢ ( 𝑅 ∈ Ring → { ( 0g ‘ 𝑅 ) } ∈ ( LPIdeal ‘ 𝑅 ) ) |
8 |
6 2
|
lpi1 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( LPIdeal ‘ 𝑅 ) ) |
9 |
7 8
|
prssd |
⊢ ( 𝑅 ∈ Ring → { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ⊆ ( LPIdeal ‘ 𝑅 ) ) |
10 |
1 9
|
syl |
⊢ ( 𝑅 ∈ DivRing → { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ⊆ ( LPIdeal ‘ 𝑅 ) ) |
11 |
5 10
|
eqsstrd |
⊢ ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) ⊆ ( LPIdeal ‘ 𝑅 ) ) |
12 |
6 4
|
islpir2 |
⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) ⊆ ( LPIdeal ‘ 𝑅 ) ) ) |
13 |
1 11 12
|
sylanbrc |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ LPIR ) |