| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngring | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Ring ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 5 | 2 3 4 | drngnidl | ⊢ ( 𝑅  ∈  DivRing  →  ( LIdeal ‘ 𝑅 )  =  { { ( 0g ‘ 𝑅 ) } ,  ( Base ‘ 𝑅 ) } ) | 
						
							| 6 |  | eqid | ⊢ ( LPIdeal ‘ 𝑅 )  =  ( LPIdeal ‘ 𝑅 ) | 
						
							| 7 | 6 3 | lpi0 | ⊢ ( 𝑅  ∈  Ring  →  { ( 0g ‘ 𝑅 ) }  ∈  ( LPIdeal ‘ 𝑅 ) ) | 
						
							| 8 | 6 2 | lpi1 | ⊢ ( 𝑅  ∈  Ring  →  ( Base ‘ 𝑅 )  ∈  ( LPIdeal ‘ 𝑅 ) ) | 
						
							| 9 | 7 8 | prssd | ⊢ ( 𝑅  ∈  Ring  →  { { ( 0g ‘ 𝑅 ) } ,  ( Base ‘ 𝑅 ) }  ⊆  ( LPIdeal ‘ 𝑅 ) ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝑅  ∈  DivRing  →  { { ( 0g ‘ 𝑅 ) } ,  ( Base ‘ 𝑅 ) }  ⊆  ( LPIdeal ‘ 𝑅 ) ) | 
						
							| 11 | 5 10 | eqsstrd | ⊢ ( 𝑅  ∈  DivRing  →  ( LIdeal ‘ 𝑅 )  ⊆  ( LPIdeal ‘ 𝑅 ) ) | 
						
							| 12 | 6 4 | islpir2 | ⊢ ( 𝑅  ∈  LPIR  ↔  ( 𝑅  ∈  Ring  ∧  ( LIdeal ‘ 𝑅 )  ⊆  ( LPIdeal ‘ 𝑅 ) ) ) | 
						
							| 13 | 1 11 12 | sylanbrc | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  LPIR ) |