Metamath Proof Explorer


Theorem drngmcl

Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011) (Proof shortened by SN, 25-Jun-2025)

Ref Expression
Hypotheses drngmcl.b 𝐵 = ( Base ‘ 𝑅 )
drngmcl.t · = ( .r𝑅 )
drngmcl.z 0 = ( 0g𝑅 )
Assertion drngmcl ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) )

Proof

Step Hyp Ref Expression
1 drngmcl.b 𝐵 = ( Base ‘ 𝑅 )
2 drngmcl.t · = ( .r𝑅 )
3 drngmcl.z 0 = ( 0g𝑅 )
4 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
5 eldifi ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋𝐵 )
6 eldifi ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) → 𝑌𝐵 )
7 1 2 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 )
8 4 5 6 7 syl3an ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 )
9 drngdomn ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn )
10 eldifsn ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋𝐵𝑋0 ) )
11 10 biimpi ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑋𝐵𝑋0 ) )
12 eldifsn ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑌𝐵𝑌0 ) )
13 12 biimpi ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑌𝐵𝑌0 ) )
14 1 2 3 domnmuln0 ( ( 𝑅 ∈ Domn ∧ ( 𝑋𝐵𝑋0 ) ∧ ( 𝑌𝐵𝑌0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 )
15 9 11 13 14 syl3an ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ≠ 0 )
16 8 15 eldifsnd ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) )