| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngmcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | drngmcl.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | drngmcl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | drngring | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | eldifi | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  {  0  } )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | eldifi | ⊢ ( 𝑌  ∈  ( 𝐵  ∖  {  0  } )  →  𝑌  ∈  𝐵 ) | 
						
							| 7 | 1 2 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 8 | 4 5 6 7 | syl3an | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑌  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 9 |  | drngdomn | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Domn ) | 
						
							| 10 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) ) | 
						
							| 11 | 10 | biimpi | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  {  0  } )  →  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) ) | 
						
							| 12 |  | eldifsn | ⊢ ( 𝑌  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( 𝑌  ∈  𝐵  ∧  𝑌  ≠   0  ) ) | 
						
							| 13 | 12 | biimpi | ⊢ ( 𝑌  ∈  ( 𝐵  ∖  {  0  } )  →  ( 𝑌  ∈  𝐵  ∧  𝑌  ≠   0  ) ) | 
						
							| 14 | 1 2 3 | domnmuln0 | ⊢ ( ( 𝑅  ∈  Domn  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  ∧  ( 𝑌  ∈  𝐵  ∧  𝑌  ≠   0  ) )  →  ( 𝑋  ·  𝑌 )  ≠   0  ) | 
						
							| 15 | 9 11 13 14 | syl3an | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑌  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑋  ·  𝑌 )  ≠   0  ) | 
						
							| 16 | 8 15 | eldifsnd | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑌  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑋  ·  𝑌 )  ∈  ( 𝐵  ∖  {  0  } ) ) |