Step |
Hyp |
Ref |
Expression |
1 |
|
drngmcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngmcl.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
drngmcl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
5 |
|
eldifi |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ∈ 𝐵 ) |
6 |
|
eldifi |
⊢ ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) → 𝑌 ∈ 𝐵 ) |
7 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
8 |
4 5 6 7
|
syl3an |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
9 |
|
drngdomn |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) |
10 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) |
11 |
10
|
biimpi |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) |
12 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) |
13 |
12
|
biimpi |
⊢ ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) |
14 |
1 2 3
|
domnmuln0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |
15 |
9 11 13 14
|
syl3an |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |
16 |
8 15
|
eldifsnd |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) ) |