| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngmcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | drngmcl.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | drngmcl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) )  =  ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 5 | 1 3 4 | drngmgp | ⊢ ( 𝑅  ∈  DivRing  →  ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  Grp ) | 
						
							| 6 |  | difss | ⊢ ( 𝐵  ∖  {  0  } )  ⊆  𝐵 | 
						
							| 7 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 8 | 7 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 9 | 4 8 | ressbas2 | ⊢ ( ( 𝐵  ∖  {  0  } )  ⊆  𝐵  →  ( 𝐵  ∖  {  0  } )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) ) | 
						
							| 10 | 6 9 | ax-mp | ⊢ ( 𝐵  ∖  {  0  } )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) | 
						
							| 11 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 12 |  | difexg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∖  {  0  } )  ∈  V ) | 
						
							| 13 | 7 2 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 14 | 4 13 | ressplusg | ⊢ ( ( 𝐵  ∖  {  0  } )  ∈  V  →   ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) ) | 
						
							| 15 | 11 12 14 | mp2b | ⊢  ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) ) ) | 
						
							| 16 | 10 15 | grpcl | ⊢ ( ( ( ( mulGrp ‘ 𝑅 )  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  Grp  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑌  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑋  ·  𝑌 )  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 17 | 5 16 | syl3an1 | ⊢ ( ( 𝑅  ∈  DivRing  ∧  𝑋  ∈  ( 𝐵  ∖  {  0  } )  ∧  𝑌  ∈  ( 𝐵  ∖  {  0  } ) )  →  ( 𝑋  ·  𝑌 )  ∈  ( 𝐵  ∖  {  0  } ) ) |