Metamath Proof Explorer


Theorem drngmgp

Description: A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011)

Ref Expression
Hypotheses drngmgp.b 𝐵 = ( Base ‘ 𝑅 )
drngmgp.z 0 = ( 0g𝑅 )
drngmgp.g 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) )
Assertion drngmgp ( 𝑅 ∈ DivRing → 𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 drngmgp.b 𝐵 = ( Base ‘ 𝑅 )
2 drngmgp.z 0 = ( 0g𝑅 )
3 drngmgp.g 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) )
4 1 2 3 isdrng2 ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) )
5 4 simprbi ( 𝑅 ∈ DivRing → 𝐺 ∈ Grp )