Description: A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmgp.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngmgp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drngmgp.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | ||
| Assertion | drngmgp | ⊢ ( 𝑅 ∈ DivRing → 𝐺 ∈ Grp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | drngmgp.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngmgp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drngmgp.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | |
| 4 | 1 2 3 | isdrng2 | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ) | 
| 5 | 4 | simprbi | ⊢ ( 𝑅 ∈ DivRing → 𝐺 ∈ Grp ) |