Description: A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngmgp.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
drngmgp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
drngmgp.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | ||
Assertion | drngmgp | ⊢ ( 𝑅 ∈ DivRing → 𝐺 ∈ Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmgp.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | drngmgp.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
3 | drngmgp.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | |
4 | 1 2 3 | isdrng2 | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ) |
5 | 4 | simprbi | ⊢ ( 𝑅 ∈ DivRing → 𝐺 ∈ Grp ) |