Metamath Proof Explorer
Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)
|
|
Ref |
Expression |
|
Hypotheses |
drngmuleq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
drngmuleq0.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
drngmuleq0.t |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
drngmuleq0.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
|
|
drngmuleq0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
drngmuleq0.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
Assertion |
drngmul0or |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
drngmuleq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngmuleq0.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngmuleq0.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drngmuleq0.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
5 |
|
drngmuleq0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
drngmuleq0.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
drngdomn |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
9 |
1 3 2
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
10 |
8 5 6 9
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |