Step |
Hyp |
Ref |
Expression |
1 |
|
drngnidl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngnidl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngnidl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
4 |
|
animorrl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 = { 0 } ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) |
5 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑅 ∈ Ring ) |
7 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 ∈ 𝑈 ) |
8 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 ≠ { 0 } ) |
9 |
3 2
|
lidlnz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈 ∧ 𝑎 ≠ { 0 } ) → ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 ) |
11 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑅 ∈ DivRing ) |
12 |
1 3
|
lidlss |
⊢ ( 𝑎 ∈ 𝑈 → 𝑎 ⊆ 𝐵 ) |
13 |
12
|
adantl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → 𝑎 ⊆ 𝐵 ) |
14 |
13
|
sselda |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐵 ) |
15 |
14
|
adantrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑏 ∈ 𝐵 ) |
16 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑏 ≠ 0 ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
20 |
1 2 17 18 19
|
drnginvrl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) |
21 |
11 15 16 20
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) |
22 |
5
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑅 ∈ Ring ) |
23 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑎 ∈ 𝑈 ) |
24 |
1 2 19
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ∈ 𝐵 ) |
25 |
11 15 16 24
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ∈ 𝐵 ) |
26 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑏 ∈ 𝑎 ) |
27 |
3 1 17
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈 ) ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ∈ 𝐵 ∧ 𝑏 ∈ 𝑎 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑎 ) |
28 |
22 23 25 26 27
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑎 ) |
29 |
21 28
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) |
30 |
29
|
rexlimdvaa |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → ( ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) ) |
31 |
30
|
imp |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 ) → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) |
32 |
10 31
|
syldan |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) |
33 |
3 1 18
|
lidl1el |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ∈ 𝑎 ↔ 𝑎 = 𝐵 ) ) |
34 |
5 33
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ∈ 𝑎 ↔ 𝑎 = 𝐵 ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( ( 1r ‘ 𝑅 ) ∈ 𝑎 ↔ 𝑎 = 𝐵 ) ) |
36 |
32 35
|
mpbid |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 = 𝐵 ) |
37 |
36
|
olcd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) |
38 |
4 37
|
pm2.61dane |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) |
39 |
|
vex |
⊢ 𝑎 ∈ V |
40 |
39
|
elpr |
⊢ ( 𝑎 ∈ { { 0 } , 𝐵 } ↔ ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) |
41 |
38 40
|
sylibr |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → 𝑎 ∈ { { 0 } , 𝐵 } ) |
42 |
41
|
ex |
⊢ ( 𝑅 ∈ DivRing → ( 𝑎 ∈ 𝑈 → 𝑎 ∈ { { 0 } , 𝐵 } ) ) |
43 |
42
|
ssrdv |
⊢ ( 𝑅 ∈ DivRing → 𝑈 ⊆ { { 0 } , 𝐵 } ) |
44 |
3 2
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |
45 |
3 1
|
lidl1 |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑈 ) |
46 |
44 45
|
prssd |
⊢ ( 𝑅 ∈ Ring → { { 0 } , 𝐵 } ⊆ 𝑈 ) |
47 |
5 46
|
syl |
⊢ ( 𝑅 ∈ DivRing → { { 0 } , 𝐵 } ⊆ 𝑈 ) |
48 |
43 47
|
eqssd |
⊢ ( 𝑅 ∈ DivRing → 𝑈 = { { 0 } , 𝐵 } ) |