Metamath Proof Explorer


Theorem drngnidl

Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses drngnidl.b 𝐵 = ( Base ‘ 𝑅 )
drngnidl.z 0 = ( 0g𝑅 )
drngnidl.u 𝑈 = ( LIdeal ‘ 𝑅 )
Assertion drngnidl ( 𝑅 ∈ DivRing → 𝑈 = { { 0 } , 𝐵 } )

Proof

Step Hyp Ref Expression
1 drngnidl.b 𝐵 = ( Base ‘ 𝑅 )
2 drngnidl.z 0 = ( 0g𝑅 )
3 drngnidl.u 𝑈 = ( LIdeal ‘ 𝑅 )
4 animorrl ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 = { 0 } ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) )
5 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
6 5 ad2antrr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑅 ∈ Ring )
7 simplr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎𝑈 )
8 simpr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 ≠ { 0 } )
9 3 2 lidlnz ( ( 𝑅 ∈ Ring ∧ 𝑎𝑈𝑎 ≠ { 0 } ) → ∃ 𝑏𝑎 𝑏0 )
10 6 7 8 9 syl3anc ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ∃ 𝑏𝑎 𝑏0 )
11 simpll ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → 𝑅 ∈ DivRing )
12 1 3 lidlss ( 𝑎𝑈𝑎𝐵 )
13 12 adantl ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) → 𝑎𝐵 )
14 13 sselda ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑏𝑎 ) → 𝑏𝐵 )
15 14 adantrr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → 𝑏𝐵 )
16 simprr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → 𝑏0 )
17 eqid ( .r𝑅 ) = ( .r𝑅 )
18 eqid ( 1r𝑅 ) = ( 1r𝑅 )
19 eqid ( invr𝑅 ) = ( invr𝑅 )
20 1 2 17 18 19 drnginvrl ( ( 𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → ( ( ( invr𝑅 ) ‘ 𝑏 ) ( .r𝑅 ) 𝑏 ) = ( 1r𝑅 ) )
21 11 15 16 20 syl3anc ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → ( ( ( invr𝑅 ) ‘ 𝑏 ) ( .r𝑅 ) 𝑏 ) = ( 1r𝑅 ) )
22 5 ad2antrr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → 𝑅 ∈ Ring )
23 simplr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → 𝑎𝑈 )
24 1 2 19 drnginvrcl ( ( 𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → ( ( invr𝑅 ) ‘ 𝑏 ) ∈ 𝐵 )
25 11 15 16 24 syl3anc ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → ( ( invr𝑅 ) ‘ 𝑏 ) ∈ 𝐵 )
26 simprl ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → 𝑏𝑎 )
27 3 1 17 lidlmcl ( ( ( 𝑅 ∈ Ring ∧ 𝑎𝑈 ) ∧ ( ( ( invr𝑅 ) ‘ 𝑏 ) ∈ 𝐵𝑏𝑎 ) ) → ( ( ( invr𝑅 ) ‘ 𝑏 ) ( .r𝑅 ) 𝑏 ) ∈ 𝑎 )
28 22 23 25 26 27 syl22anc ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → ( ( ( invr𝑅 ) ‘ 𝑏 ) ( .r𝑅 ) 𝑏 ) ∈ 𝑎 )
29 21 28 eqeltrrd ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ( 𝑏𝑎𝑏0 ) ) → ( 1r𝑅 ) ∈ 𝑎 )
30 29 rexlimdvaa ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) → ( ∃ 𝑏𝑎 𝑏0 → ( 1r𝑅 ) ∈ 𝑎 ) )
31 30 imp ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ ∃ 𝑏𝑎 𝑏0 ) → ( 1r𝑅 ) ∈ 𝑎 )
32 10 31 syldan ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( 1r𝑅 ) ∈ 𝑎 )
33 3 1 18 lidl1el ( ( 𝑅 ∈ Ring ∧ 𝑎𝑈 ) → ( ( 1r𝑅 ) ∈ 𝑎𝑎 = 𝐵 ) )
34 5 33 sylan ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) → ( ( 1r𝑅 ) ∈ 𝑎𝑎 = 𝐵 ) )
35 34 adantr ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( ( 1r𝑅 ) ∈ 𝑎𝑎 = 𝐵 ) )
36 32 35 mpbid ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 = 𝐵 )
37 36 olcd ( ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) )
38 4 37 pm2.61dane ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) )
39 vex 𝑎 ∈ V
40 39 elpr ( 𝑎 ∈ { { 0 } , 𝐵 } ↔ ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) )
41 38 40 sylibr ( ( 𝑅 ∈ DivRing ∧ 𝑎𝑈 ) → 𝑎 ∈ { { 0 } , 𝐵 } )
42 41 ex ( 𝑅 ∈ DivRing → ( 𝑎𝑈𝑎 ∈ { { 0 } , 𝐵 } ) )
43 42 ssrdv ( 𝑅 ∈ DivRing → 𝑈 ⊆ { { 0 } , 𝐵 } )
44 3 2 lidl0 ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 )
45 3 1 lidl1 ( 𝑅 ∈ Ring → 𝐵𝑈 )
46 44 45 prssd ( 𝑅 ∈ Ring → { { 0 } , 𝐵 } ⊆ 𝑈 )
47 5 46 syl ( 𝑅 ∈ DivRing → { { 0 } , 𝐵 } ⊆ 𝑈 )
48 43 47 eqssd ( 𝑅 ∈ DivRing → 𝑈 = { { 0 } , 𝐵 } )