Description: All division rings are nonzero. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | drngnzr | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
2 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
4 | 2 3 | drngunz | ⊢ ( 𝑅 ∈ DivRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
5 | 3 2 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
6 | 1 4 5 | sylanbrc | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |