Description: A division ring is a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | drngnzr | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 2 3 | drngunz | ⊢ ( 𝑅 ∈ DivRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 5 | 3 2 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 6 | 1 4 5 | sylanbrc | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |