Metamath Proof Explorer


Theorem drngnzr

Description: All division rings are nonzero. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion drngnzr ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing )

Proof

Step Hyp Ref Expression
1 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
2 eqid ( 0g𝑅 ) = ( 0g𝑅 )
3 eqid ( 1r𝑅 ) = ( 1r𝑅 )
4 2 3 drngunz ( 𝑅 ∈ DivRing → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
5 3 2 isnzr ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) )
6 1 4 5 sylanbrc ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing )