Metamath Proof Explorer


Theorem drngprop

Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013) (Revised by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses drngprop.b ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 )
drngprop.p ( +g𝐾 ) = ( +g𝐿 )
drngprop.m ( .r𝐾 ) = ( .r𝐿 )
Assertion drngprop ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 drngprop.b ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 )
2 drngprop.p ( +g𝐾 ) = ( +g𝐿 )
3 drngprop.m ( .r𝐾 ) = ( .r𝐿 )
4 eqidd ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) )
5 1 a1i ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
6 3 oveqi ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 )
7 6 a1i ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
8 4 5 7 unitpropd ( 𝐾 ∈ Ring → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) )
9 2 oveqi ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 )
10 9 a1i ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
11 4 5 10 grpidpropd ( 𝐾 ∈ Ring → ( 0g𝐾 ) = ( 0g𝐿 ) )
12 11 sneqd ( 𝐾 ∈ Ring → { ( 0g𝐾 ) } = { ( 0g𝐿 ) } )
13 12 difeq2d ( 𝐾 ∈ Ring → ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐿 ) } ) )
14 8 13 eqeq12d ( 𝐾 ∈ Ring → ( ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ↔ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐿 ) } ) ) )
15 14 pm5.32i ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ) ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐿 ) } ) ) )
16 1 2 3 ringprop ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring )
17 16 anbi1i ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐿 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐿 ) } ) ) )
18 15 17 bitri ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐿 ) } ) ) )
19 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
20 eqid ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 )
21 eqid ( 0g𝐾 ) = ( 0g𝐾 )
22 19 20 21 isdrng ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ) )
23 eqid ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 )
24 eqid ( 0g𝐿 ) = ( 0g𝐿 )
25 1 23 24 isdrng ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐿 ) } ) ) )
26 18 22 25 3bitr4i ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing )