Step |
Hyp |
Ref |
Expression |
1 |
|
drngprop.b |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) |
2 |
|
drngprop.p |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) |
3 |
|
drngprop.m |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐿 ) |
4 |
|
eqidd |
⊢ ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
5 |
1
|
a1i |
⊢ ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
6 |
3
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) |
7 |
6
|
a1i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
8 |
4 5 7
|
unitpropd |
⊢ ( 𝐾 ∈ Ring → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
9 |
2
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) |
10 |
9
|
a1i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
11 |
4 5 10
|
grpidpropd |
⊢ ( 𝐾 ∈ Ring → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
12 |
11
|
sneqd |
⊢ ( 𝐾 ∈ Ring → { ( 0g ‘ 𝐾 ) } = { ( 0g ‘ 𝐿 ) } ) |
13 |
12
|
difeq2d |
⊢ ( 𝐾 ∈ Ring → ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) |
14 |
8 13
|
eqeq12d |
⊢ ( 𝐾 ∈ Ring → ( ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ↔ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
15 |
14
|
pm5.32i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
16 |
1 2 3
|
ringprop |
⊢ ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) |
17 |
16
|
anbi1i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
18 |
15 17
|
bitri |
⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
22 |
19 20 21
|
isdrng |
⊢ ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
23 |
|
eqid |
⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
25 |
1 23 24
|
isdrng |
⊢ ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
26 |
18 22 25
|
3bitr4i |
⊢ ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) |