Metamath Proof Explorer


Theorem drngpropd

Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses drngpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
drngpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
drngpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
drngpropd.4 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
Assertion drngpropd ( 𝜑 → ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) )

Proof

Step Hyp Ref Expression
1 drngpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 drngpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 drngpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
4 drngpropd.4 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
5 1 2 4 unitpropd ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) )
6 5 adantr ( ( 𝜑𝐾 ∈ Ring ) → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) )
7 1 2 eqtr3d ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
8 7 adantr ( ( 𝜑𝐾 ∈ Ring ) → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
9 1 adantr ( ( 𝜑𝐾 ∈ Ring ) → 𝐵 = ( Base ‘ 𝐾 ) )
10 2 adantr ( ( 𝜑𝐾 ∈ Ring ) → 𝐵 = ( Base ‘ 𝐿 ) )
11 3 adantlr ( ( ( 𝜑𝐾 ∈ Ring ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
12 9 10 11 grpidpropd ( ( 𝜑𝐾 ∈ Ring ) → ( 0g𝐾 ) = ( 0g𝐿 ) )
13 12 sneqd ( ( 𝜑𝐾 ∈ Ring ) → { ( 0g𝐾 ) } = { ( 0g𝐿 ) } )
14 8 13 difeq12d ( ( 𝜑𝐾 ∈ Ring ) → ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g𝐿 ) } ) )
15 6 14 eqeq12d ( ( 𝜑𝐾 ∈ Ring ) → ( ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ↔ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g𝐿 ) } ) ) )
16 15 pm5.32da ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ) ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g𝐿 ) } ) ) ) )
17 1 2 3 4 ringpropd ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) )
18 17 anbi1d ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g𝐿 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g𝐿 ) } ) ) ) )
19 16 18 bitrd ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g𝐿 ) } ) ) ) )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 eqid ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 )
22 eqid ( 0g𝐾 ) = ( 0g𝐾 )
23 20 21 22 isdrng ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g𝐾 ) } ) ) )
24 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
25 eqid ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 )
26 eqid ( 0g𝐿 ) = ( 0g𝐿 )
27 24 25 26 isdrng ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g𝐿 ) } ) ) )
28 19 23 27 3bitr4g ( 𝜑 → ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) )