Step |
Hyp |
Ref |
Expression |
1 |
|
drngpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
drngpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
drngpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
|
drngpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
5 |
1 2 4
|
unitpropd |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
7 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → 𝐵 = ( Base ‘ 𝐾 ) ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → 𝐵 = ( Base ‘ 𝐿 ) ) |
11 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
12 |
9 10 11
|
grpidpropd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
13 |
12
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → { ( 0g ‘ 𝐾 ) } = { ( 0g ‘ 𝐿 ) } ) |
14 |
8 13
|
difeq12d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) |
15 |
6 14
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Ring ) → ( ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ↔ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
16 |
15
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
17 |
1 2 3 4
|
ringpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
19 |
16 18
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
21 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
23 |
20 21 22
|
isdrng |
⊢ ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
25 |
|
eqid |
⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
27 |
24 25 26
|
isdrng |
⊢ ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐿 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
28 |
19 23 27
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) ) |