Metamath Proof Explorer


Theorem drngring

Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011)

Ref Expression
Assertion drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
3 eqid ( 0g𝑅 ) = ( 0g𝑅 )
4 1 2 3 isdrng ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g𝑅 ) } ) ) )
5 4 simplbi ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )