Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
2 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
3 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
4 | 1 2 3 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
5 | 4 | simplbi | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |