Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 4 | 1 2 3 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 5 | 4 | simplbi | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |