Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngui.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
drngui.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
drngui.r | ⊢ 𝑅 ∈ DivRing | ||
Assertion | drngui | ⊢ ( 𝐵 ∖ { 0 } ) = ( Unit ‘ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngui.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | drngui.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
3 | drngui.r | ⊢ 𝑅 ∈ DivRing | |
4 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
5 | 1 4 2 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) ) |
6 | 3 5 | mpbi | ⊢ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) |
7 | 6 | simpri | ⊢ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) |
8 | 7 | eqcomi | ⊢ ( 𝐵 ∖ { 0 } ) = ( Unit ‘ 𝑅 ) |