Metamath Proof Explorer


Theorem drngui

Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses drngui.b 𝐵 = ( Base ‘ 𝑅 )
drngui.z 0 = ( 0g𝑅 )
drngui.r 𝑅 ∈ DivRing
Assertion drngui ( 𝐵 ∖ { 0 } ) = ( Unit ‘ 𝑅 )

Proof

Step Hyp Ref Expression
1 drngui.b 𝐵 = ( Base ‘ 𝑅 )
2 drngui.z 0 = ( 0g𝑅 )
3 drngui.r 𝑅 ∈ DivRing
4 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
5 1 4 2 isdrng ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) )
6 3 5 mpbi ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) )
7 6 simpri ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } )
8 7 eqcomi ( 𝐵 ∖ { 0 } ) = ( Unit ‘ 𝑅 )