Description: Elementhood in the set of units when R is a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdrng.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| isdrng.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdrng.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | isdrng.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 2 3 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝑅 ∈ DivRing → 𝑈 = ( 𝐵 ∖ { 0 } ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 7 | eldifsn | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) | |
| 8 | 6 7 | bitrdi | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |