Step |
Hyp |
Ref |
Expression |
1 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
2 |
1
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
3 |
2
|
imbi1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 = 𝑧 → 𝜑 ) ↔ ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
4 |
2
|
anbi1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 = 𝑧 ∧ 𝜑 ) ↔ ( 𝑦 = 𝑧 ∧ 𝜑 ) ) ) |
5 |
4
|
drex1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝑧 ∧ 𝜑 ) ) ) |
6 |
3 5
|
anbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( ( 𝑥 = 𝑧 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝜑 ) ) ↔ ( ( 𝑦 = 𝑧 → 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 = 𝑧 ∧ 𝜑 ) ) ) ) |
7 |
|
dfsb1 |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ( ( 𝑥 = 𝑧 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝜑 ) ) ) |
8 |
|
dfsb1 |
⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ ( ( 𝑦 = 𝑧 → 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 = 𝑧 ∧ 𝜑 ) ) ) |
9 |
6 7 8
|
3bitr4g |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) |