Metamath Proof Explorer
Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015)
|
|
Ref |
Expression |
|
Hypothesis |
drsbn0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
Assertion |
drsbn0 |
⊢ ( 𝐾 ∈ Dirset → 𝐵 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
drsbn0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
3 |
1 2
|
isdrs |
⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑧 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
4 |
3
|
simp2bi |
⊢ ( 𝐾 ∈ Dirset → 𝐵 ≠ ∅ ) |