Metamath Proof Explorer


Theorem drsbn0

Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis drsbn0.b 𝐵 = ( Base ‘ 𝐾 )
Assertion drsbn0 ( 𝐾 ∈ Dirset → 𝐵 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 drsbn0.b 𝐵 = ( Base ‘ 𝐾 )
2 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
3 1 2 isdrs ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑧𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) )
4 3 simp2bi ( 𝐾 ∈ Dirset → 𝐵 ≠ ∅ )