Metamath Proof Explorer
		
		
		
		Description:  The base of a directed set is not empty.  (Contributed by Stefan O'Rear, 1-Feb-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | drsbn0.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
				
					|  | Assertion | drsbn0 | ⊢  ( 𝐾  ∈  Dirset  →  𝐵  ≠  ∅ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drsbn0.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 3 | 1 2 | isdrs | ⊢ ( 𝐾  ∈  Dirset  ↔  ( 𝐾  ∈   Proset   ∧  𝐵  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐵 ( 𝑥 ( le ‘ 𝐾 ) 𝑧  ∧  𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) ) | 
						
							| 4 | 3 | simp2bi | ⊢ ( 𝐾  ∈  Dirset  →  𝐵  ≠  ∅ ) |