Metamath Proof Explorer


Theorem drsdir

Description: Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isdrs.b 𝐵 = ( Base ‘ 𝐾 )
isdrs.l = ( le ‘ 𝐾 )
Assertion drsdir ( ( 𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵 ) → ∃ 𝑧𝐵 ( 𝑋 𝑧𝑌 𝑧 ) )

Proof

Step Hyp Ref Expression
1 isdrs.b 𝐵 = ( Base ‘ 𝐾 )
2 isdrs.l = ( le ‘ 𝐾 )
3 1 2 isdrs ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑧𝑦 𝑧 ) ) )
4 3 simp3bi ( 𝐾 ∈ Dirset → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑧𝑦 𝑧 ) )
5 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑧𝑋 𝑧 ) )
6 5 anbi1d ( 𝑥 = 𝑋 → ( ( 𝑥 𝑧𝑦 𝑧 ) ↔ ( 𝑋 𝑧𝑦 𝑧 ) ) )
7 6 rexbidv ( 𝑥 = 𝑋 → ( ∃ 𝑧𝐵 ( 𝑥 𝑧𝑦 𝑧 ) ↔ ∃ 𝑧𝐵 ( 𝑋 𝑧𝑦 𝑧 ) ) )
8 breq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑧𝑌 𝑧 ) )
9 8 anbi2d ( 𝑦 = 𝑌 → ( ( 𝑋 𝑧𝑦 𝑧 ) ↔ ( 𝑋 𝑧𝑌 𝑧 ) ) )
10 9 rexbidv ( 𝑦 = 𝑌 → ( ∃ 𝑧𝐵 ( 𝑋 𝑧𝑦 𝑧 ) ↔ ∃ 𝑧𝐵 ( 𝑋 𝑧𝑌 𝑧 ) ) )
11 7 10 rspc2v ( ( 𝑋𝐵𝑌𝐵 ) → ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑧𝑦 𝑧 ) → ∃ 𝑧𝐵 ( 𝑋 𝑧𝑌 𝑧 ) ) )
12 4 11 syl5com ( 𝐾 ∈ Dirset → ( ( 𝑋𝐵𝑌𝐵 ) → ∃ 𝑧𝐵 ( 𝑋 𝑧𝑌 𝑧 ) ) )
13 12 3impib ( ( 𝐾 ∈ Dirset ∧ 𝑋𝐵𝑌𝐵 ) → ∃ 𝑧𝐵 ( 𝑋 𝑧𝑌 𝑧 ) )