Step |
Hyp |
Ref |
Expression |
1 |
|
isdrs.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
isdrs.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
1 2
|
isdrs |
⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
4 |
3
|
simp3bi |
⊢ ( 𝐾 ∈ Dirset → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) |
5 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧 ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
11 |
7 10
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
12 |
4 11
|
syl5com |
⊢ ( 𝐾 ∈ Dirset → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) ) |
13 |
12
|
3impib |
⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧 ) ) |