Step |
Hyp |
Ref |
Expression |
1 |
|
drsbn0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
drsdirfi.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵 ) ) ) |
5 |
|
raleq |
⊢ ( 𝑎 = ∅ → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) ) |
8 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐵 ↔ 𝑏 ⊆ 𝐵 ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) ) ) |
10 |
|
raleq |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) ) |
13 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐵 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ) ) |
15 |
|
raleq |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) ) |
18 |
|
sseq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 ⊆ 𝐵 ↔ 𝑋 ⊆ 𝐵 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) ↔ ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) ) ) |
20 |
|
raleq |
⊢ ( 𝑎 = 𝑋 → ( ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) |
21 |
20
|
rexbidv |
⊢ ( 𝑎 = 𝑋 → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) |
22 |
19 21
|
imbi12d |
⊢ ( 𝑎 = 𝑋 → ( ( ( 𝐾 ∈ Dirset ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑎 𝑧 ≤ 𝑦 ) ↔ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) ) |
23 |
1
|
drsbn0 |
⊢ ( 𝐾 ∈ Dirset → 𝐵 ≠ ∅ ) |
24 |
|
ral0 |
⊢ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 |
25 |
24
|
jctr |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
26 |
25
|
eximi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
27 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) |
28 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) ) |
29 |
26 27 28
|
3imtr4i |
⊢ ( 𝐵 ≠ ∅ → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) |
30 |
23 29
|
syl |
⊢ ( 𝐾 ∈ Dirset → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) |
31 |
30
|
adantr |
⊢ ( ( 𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ∅ 𝑧 ≤ 𝑦 ) |
32 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
33 |
|
sstr |
⊢ ( ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → 𝑏 ⊆ 𝐵 ) |
34 |
32 33
|
mpan |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 → 𝑏 ⊆ 𝐵 ) |
35 |
34
|
anim2i |
⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) ) |
36 |
|
breq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑎 ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝑦 = 𝑎 → ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ↔ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) |
38 |
37
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ↔ ∃ 𝑎 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) |
39 |
|
simplrr |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) |
40 |
|
drsprs |
⊢ ( 𝐾 ∈ Dirset → 𝐾 ∈ Proset ) |
41 |
40
|
ad5antr |
⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝐾 ∈ Proset ) |
42 |
34
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑏 ⊆ 𝐵 ) |
43 |
42
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑏 ⊆ 𝐵 ) |
44 |
43
|
sselda |
⊢ ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) → 𝑧 ∈ 𝐵 ) |
45 |
44
|
adantr |
⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑧 ∈ 𝐵 ) |
46 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑎 ∈ 𝐵 ) |
47 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑦 ∈ 𝐵 ) |
49 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑧 ≤ 𝑎 ) |
50 |
|
simprrl |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑎 ≤ 𝑦 ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑎 ≤ 𝑦 ) |
52 |
1 2
|
prstr |
⊢ ( ( 𝐾 ∈ Proset ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ≤ 𝑎 ∧ 𝑎 ≤ 𝑦 ) ) → 𝑧 ≤ 𝑦 ) |
53 |
41 45 46 48 49 51 52
|
syl132anc |
⊢ ( ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) ∧ 𝑧 ≤ 𝑎 ) → 𝑧 ≤ 𝑦 ) |
54 |
53
|
ex |
⊢ ( ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝑏 ) → ( 𝑧 ≤ 𝑎 → 𝑧 ≤ 𝑦 ) ) |
55 |
54
|
ralimdva |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) |
56 |
55
|
adantlrr |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) ) |
57 |
39 56
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) |
58 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ≤ 𝑦 ) |
59 |
|
vex |
⊢ 𝑐 ∈ V |
60 |
|
breq1 |
⊢ ( 𝑧 = 𝑐 → ( 𝑧 ≤ 𝑦 ↔ 𝑐 ≤ 𝑦 ) ) |
61 |
59 60
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 𝑐 } 𝑧 ≤ 𝑦 ↔ 𝑐 ≤ 𝑦 ) |
62 |
58 61
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ { 𝑐 } 𝑧 ≤ 𝑦 ) |
63 |
|
ralun |
⊢ ( ( ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ∧ ∀ 𝑧 ∈ { 𝑐 } 𝑧 ≤ 𝑦 ) → ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) |
64 |
57 62 63
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) |
65 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → 𝐾 ∈ Dirset ) |
66 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → 𝑎 ∈ 𝐵 ) |
67 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) |
68 |
|
sstr |
⊢ ( ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → { 𝑐 } ⊆ 𝐵 ) |
69 |
67 68
|
mpan |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 → { 𝑐 } ⊆ 𝐵 ) |
70 |
59
|
snss |
⊢ ( 𝑐 ∈ 𝐵 ↔ { 𝑐 } ⊆ 𝐵 ) |
71 |
69 70
|
sylibr |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 → 𝑐 ∈ 𝐵 ) |
72 |
71
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → 𝑐 ∈ 𝐵 ) |
73 |
1 2
|
drsdir |
⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑎 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) |
74 |
65 66 72 73
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑎 ≤ 𝑦 ∧ 𝑐 ≤ 𝑦 ) ) |
75 |
64 74
|
reximddv |
⊢ ( ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 ) ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) |
76 |
75
|
rexlimdvaa |
⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑎 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
77 |
38 76
|
syl5bi |
⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
78 |
35 77
|
embantd |
⊢ ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ( ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
79 |
78
|
com12 |
⊢ ( ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) → ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) |
80 |
79
|
a1i |
⊢ ( 𝑏 ∈ Fin → ( ( ( 𝐾 ∈ Dirset ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑏 𝑧 ≤ 𝑦 ) → ( ( 𝐾 ∈ Dirset ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑏 ∪ { 𝑐 } ) 𝑧 ≤ 𝑦 ) ) ) |
81 |
7 12 17 22 31 80
|
findcard2 |
⊢ ( 𝑋 ∈ Fin → ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) |
82 |
81
|
com12 |
⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ) → ( 𝑋 ∈ Fin → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) ) |
83 |
82
|
3impia |
⊢ ( ( 𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ∧ 𝑋 ∈ Fin ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑋 𝑧 ≤ 𝑦 ) |