Metamath Proof Explorer


Theorem drsprs

Description: A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion drsprs ( 𝐾 ∈ Dirset → 𝐾 ∈ Proset )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
2 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
3 1 2 isdrs ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ ( Base ‘ 𝐾 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑧𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) )
4 3 simp1bi ( 𝐾 ∈ Dirset → 𝐾 ∈ Proset )