| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmbas2.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | dsmmbas2.b | ⊢ 𝐵  =  { 𝑓  ∈  ( Base ‘ 𝑃 )  ∣  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  ∈  Fin } | 
						
							| 3 | 1 | fveq2i | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) | 
						
							| 4 | 3 | rabeqi | ⊢ { 𝑓  ∈  ( Base ‘ 𝑃 )  ∣  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  ∈  Fin }  =  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  ∈  Fin } | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 6 |  | fvco2 | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝑥  ∈  𝐼 )  →  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 8 | 7 | neeq2d | ⊢ ( ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑓 ‘ 𝑥 )  ≠  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 )  ↔  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 9 | 8 | rabbidva | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  { 𝑥  ∈  𝐼  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐼  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑆 Xs 𝑅 )  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( 𝑆 Xs 𝑅 ) )  =  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) | 
						
							| 12 |  | reldmprds | ⊢ Rel  dom  Xs | 
						
							| 13 | 10 11 12 | strov2rcl | ⊢ ( 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  →  𝑆  ∈  V ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  𝑆  ∈  V ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) | 
						
							| 17 | 10 11 14 15 5 16 | prdsbasfn | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  𝑓  Fn  𝐼 ) | 
						
							| 18 |  | fn0g | ⊢ 0g  Fn  V | 
						
							| 19 |  | dffn2 | ⊢ ( 0g  Fn  V  ↔  0g : V ⟶ V ) | 
						
							| 20 | 18 19 | mpbi | ⊢ 0g : V ⟶ V | 
						
							| 21 |  | dffn2 | ⊢ ( 𝑅  Fn  𝐼  ↔  𝑅 : 𝐼 ⟶ V ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑅  Fn  𝐼  →  𝑅 : 𝐼 ⟶ V ) | 
						
							| 23 |  | fco | ⊢ ( ( 0g : V ⟶ V  ∧  𝑅 : 𝐼 ⟶ V )  →  ( 0g  ∘  𝑅 ) : 𝐼 ⟶ V ) | 
						
							| 24 | 20 22 23 | sylancr | ⊢ ( 𝑅  Fn  𝐼  →  ( 0g  ∘  𝑅 ) : 𝐼 ⟶ V ) | 
						
							| 25 | 24 | ffnd | ⊢ ( 𝑅  Fn  𝐼  →  ( 0g  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 26 | 5 25 | syl | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  ( 0g  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 27 |  | fndmdif | ⊢ ( ( 𝑓  Fn  𝐼  ∧  ( 0g  ∘  𝑅 )  Fn  𝐼 )  →  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  =  { 𝑥  ∈  𝐼  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 ) } ) | 
						
							| 28 | 17 26 27 | syl2anc | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  =  { 𝑥  ∈  𝐼  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 ) } ) | 
						
							| 29 |  | fndm | ⊢ ( 𝑅  Fn  𝐼  →  dom  𝑅  =  𝐼 ) | 
						
							| 30 | 29 | rabeqdv | ⊢ ( 𝑅  Fn  𝐼  →  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  =  { 𝑥  ∈  𝐼  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) | 
						
							| 31 | 5 30 | syl | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  =  { 𝑥  ∈  𝐼  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) | 
						
							| 32 | 9 28 31 | 3eqtr4d | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  =  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  ∧  𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )  →  ( dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  ∈  Fin  ↔  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) ) | 
						
							| 34 | 33 | rabbidva | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  →  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  ∈  Fin }  =  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin } ) | 
						
							| 35 | 4 34 | eqtrid | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  →  { 𝑓  ∈  ( Base ‘ 𝑃 )  ∣  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  ∈  Fin }  =  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin } ) | 
						
							| 36 |  | fnex | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  →  𝑅  ∈  V ) | 
						
							| 37 |  | eqid | ⊢ { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin }  =  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin } | 
						
							| 38 | 37 | dsmmbase | ⊢ ( 𝑅  ∈  V  →  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin }  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) ) | 
						
							| 39 | 36 38 | syl | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  →  { 𝑓  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑥  ∈  dom  𝑅  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin }  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) ) | 
						
							| 40 | 35 39 | eqtrd | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  →  { 𝑓  ∈  ( Base ‘ 𝑃 )  ∣  dom  ( 𝑓  ∖  ( 0g  ∘  𝑅 ) )  ∈  Fin }  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) ) | 
						
							| 41 | 2 40 | eqtrid | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑉 )  →  𝐵  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) ) |