| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmlss.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 2 |  | dsmmlss.s | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 3 |  | dsmmlss.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ LMod ) | 
						
							| 4 |  | dsmmlss.k | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) )  =  𝑆 ) | 
						
							| 5 |  | dsmmlss.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 6 |  | dsmmlss.u | ⊢ 𝑈  =  ( LSubSp ‘ 𝑃 ) | 
						
							| 7 |  | dsmmlss.h | ⊢ 𝐻  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) | 
						
							| 8 |  | lmodgrp | ⊢ ( 𝑎  ∈  LMod  →  𝑎  ∈  Grp ) | 
						
							| 9 | 8 | ssriv | ⊢ LMod  ⊆  Grp | 
						
							| 10 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ LMod  ∧  LMod  ⊆  Grp )  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 11 | 3 9 10 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 12 | 5 7 1 2 11 | dsmmsubg | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝑃 ) ) | 
						
							| 13 | 5 2 1 3 4 | prdslmodd | ⊢ ( 𝜑  →  𝑃  ∈  LMod ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  𝑃  ∈  LMod ) | 
						
							| 15 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  𝑏  ∈  𝐻 ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑆  ⊕m  𝑅 )  =  ( 𝑆  ⊕m  𝑅 ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 19 | 3 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 20 | 5 17 18 7 1 19 | dsmmelbas | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐻  ↔  ( 𝑏  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑥  ∈  𝐼  ∣  ( 𝑏 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑏  ∈  𝐻  ↔  ( 𝑏  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑥  ∈  𝐼  ∣  ( 𝑏 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) ) ) | 
						
							| 22 | 16 21 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑏  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑥  ∈  𝐼  ∣  ( 𝑏 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  𝑏  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 24 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 25 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 27 | 18 24 25 26 | lmodvscl | ⊢ ( ( 𝑃  ∈  LMod  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 28 | 14 15 23 27 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 29 | 22 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  { 𝑥  ∈  𝐼  ∣  ( 𝑏 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 31 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝑆  ∈  Ring ) | 
						
							| 32 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 33 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 34 | 3 1 | fexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 35 | 5 2 34 | prdssca | ⊢ ( 𝜑  →  𝑆  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 37 | 36 | eleq2d | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ↔  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) | 
						
							| 38 | 37 | biimpar | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 39 | 38 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 41 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝑏  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 ) | 
						
							| 43 | 5 18 25 30 31 32 33 40 41 42 | prdsvscafval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 | adantrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  ( 𝑥  ∈  𝐼  ∧  ( 𝑏 ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) | 
						
							| 45 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑥 )  ∈  LMod ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑥 )  ∈  LMod ) | 
						
							| 47 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 48 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑆  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 49 | 4 48 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 51 | 50 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 52 | 47 51 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 53 |  | eqid | ⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 54 |  | eqid | ⊢ (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) )  =  (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 55 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 56 |  | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 57 | 53 54 55 56 | lmodvs0 | ⊢ ( ( ( 𝑅 ‘ 𝑥 )  ∈  LMod  ∧  𝑎  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 58 | 46 52 57 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 59 |  | oveq2 | ⊢ ( ( 𝑏 ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 60 | 59 | eqeq1d | ⊢ ( ( 𝑏 ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  →  ( ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  ↔  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 61 | 58 60 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑏 ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 62 | 61 | impr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  ( 𝑥  ∈  𝐼  ∧  ( 𝑏 ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 63 | 44 62 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  ( 𝑥  ∈  𝐼  ∧  ( 𝑏 ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 64 | 63 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑏 ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 65 | 64 | necon3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  ∧  𝑥  ∈  𝐼 )  →  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  →  ( 𝑏 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 66 | 65 | ss2rabdv | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  { 𝑥  ∈  𝐼  ∣  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ⊆  { 𝑥  ∈  𝐼  ∣  ( 𝑏 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) | 
						
							| 67 | 29 66 | ssfid | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  { 𝑥  ∈  𝐼  ∣  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) | 
						
							| 68 | 5 17 18 7 1 19 | dsmmelbas | ⊢ ( 𝜑  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  𝐻  ↔  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑥  ∈  𝐼  ∣  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  𝐻  ↔  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑥  ∈  𝐼  ∣  ( ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) }  ∈  Fin ) ) ) | 
						
							| 70 | 28 67 69 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  𝐻 ) | 
						
							| 71 | 70 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏  ∈  𝐻 ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  𝐻 ) | 
						
							| 72 | 24 26 18 25 6 | islss4 | ⊢ ( 𝑃  ∈  LMod  →  ( 𝐻  ∈  𝑈  ↔  ( 𝐻  ∈  ( SubGrp ‘ 𝑃 )  ∧  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏  ∈  𝐻 ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  𝐻 ) ) ) | 
						
							| 73 | 13 72 | syl | ⊢ ( 𝜑  →  ( 𝐻  ∈  𝑈  ↔  ( 𝐻  ∈  ( SubGrp ‘ 𝑃 )  ∧  ∀ 𝑎  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏  ∈  𝐻 ( 𝑎 (  ·𝑠  ‘ 𝑃 ) 𝑏 )  ∈  𝐻 ) ) ) | 
						
							| 74 | 12 71 73 | mpbir2and | ⊢ ( 𝜑  →  𝐻  ∈  𝑈 ) |