| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmsubg.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | dsmmsubg.h | ⊢ 𝐻  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) | 
						
							| 3 |  | dsmmsubg.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 4 |  | dsmmsubg.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 5 |  | dsmmsubg.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑃  ↾s  𝐻 )  =  ( 𝑃  ↾s  𝐻 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) ) | 
						
							| 9 | 5 3 | fexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 10 |  | eqid | ⊢ { 𝑎  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑏  ∈  dom  𝑅  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin }  =  { 𝑎  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑏  ∈  dom  𝑅  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin } | 
						
							| 11 | 10 | dsmmbase | ⊢ ( 𝑅  ∈  V  →  { 𝑎  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑏  ∈  dom  𝑅  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin }  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝜑  →  { 𝑎  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑏  ∈  dom  𝑅  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin }  =  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) ) ) | 
						
							| 13 |  | ssrab2 | ⊢ { 𝑎  ∈  ( Base ‘ ( 𝑆 Xs 𝑅 ) )  ∣  { 𝑏  ∈  dom  𝑅  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin }  ⊆  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) | 
						
							| 14 | 12 13 | eqsstrrdi | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑆  ⊕m  𝑅 ) )  ⊆  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) | 
						
							| 15 | 1 | fveq2i | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 𝑆 Xs 𝑅 ) ) | 
						
							| 16 | 14 2 15 | 3sstr4g | ⊢ ( 𝜑  →  𝐻  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 17 |  | grpmnd | ⊢ ( 𝑎  ∈  Grp  →  𝑎  ∈  Mnd ) | 
						
							| 18 | 17 | ssriv | ⊢ Grp  ⊆  Mnd | 
						
							| 19 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Grp  ∧  Grp  ⊆  Mnd )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 20 | 5 18 19 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 22 | 1 2 3 4 20 21 | dsmm0cl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑃 )  ∈  𝐻 ) | 
						
							| 23 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  𝐼  ∈  𝑊 ) | 
						
							| 24 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  𝑆  ∈  𝑉 ) | 
						
							| 25 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 26 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  𝑎  ∈  𝐻 ) | 
						
							| 27 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  𝑏  ∈  𝐻 ) | 
						
							| 28 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 29 | 1 2 23 24 25 26 27 28 | dsmmacl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 )  ∈  𝐻 ) | 
						
							| 30 | 1 3 4 5 | prdsgrpd | ⊢ ( 𝜑  →  𝑃  ∈  Grp ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  𝑃  ∈  Grp ) | 
						
							| 32 | 16 | sselda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  𝑎  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 34 |  | eqid | ⊢ ( invg ‘ 𝑃 )  =  ( invg ‘ 𝑃 ) | 
						
							| 35 | 33 34 | grpinvcl | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝑎  ∈  ( Base ‘ 𝑃 ) )  →  ( ( invg ‘ 𝑃 ) ‘ 𝑎 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 36 | 31 32 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  ( ( invg ‘ 𝑃 ) ‘ 𝑎 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  𝑎  ∈  𝐻 ) | 
						
							| 38 |  | eqid | ⊢ ( 𝑆  ⊕m  𝑅 )  =  ( 𝑆  ⊕m  𝑅 ) | 
						
							| 39 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  𝐼  ∈  𝑊 ) | 
						
							| 40 | 5 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  𝑅  Fn  𝐼 ) | 
						
							| 42 | 1 38 33 2 39 41 | dsmmelbas | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  ( 𝑎  ∈  𝐻  ↔  ( 𝑎  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑏  ∈  𝐼  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin ) ) ) | 
						
							| 43 | 37 42 | mpbid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  ( 𝑎  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑏  ∈  𝐼  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin ) ) | 
						
							| 44 | 43 | simprd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  { 𝑏  ∈  𝐼  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin ) | 
						
							| 45 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 46 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  𝑆  ∈  𝑉 ) | 
						
							| 47 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 48 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  𝑏  ∈  𝐼 ) | 
						
							| 50 | 1 45 46 47 33 34 48 49 | prdsinvgd2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  =  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) | 
						
							| 51 | 50 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  ( 𝑏  ∈  𝐼  ∧  ( 𝑎 ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  →  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  =  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( ( 𝑎 ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) )  →  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) )  =  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) | 
						
							| 53 | 52 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  ( 𝑏  ∈  𝐼  ∧  ( 𝑎 ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  →  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) )  =  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) | 
						
							| 54 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑏 )  ∈  Grp ) | 
						
							| 55 | 54 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑏 )  ∈  Grp ) | 
						
							| 56 |  | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) | 
						
							| 57 |  | eqid | ⊢ ( invg ‘ ( 𝑅 ‘ 𝑏 ) )  =  ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) | 
						
							| 58 | 56 57 | grpinvid | ⊢ ( ( 𝑅 ‘ 𝑏 )  ∈  Grp  →  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) | 
						
							| 59 | 55 58 | syl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) | 
						
							| 60 | 59 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  ( 𝑏  ∈  𝐼  ∧  ( 𝑎 ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  →  ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) | 
						
							| 61 | 51 53 60 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  ( 𝑏  ∈  𝐼  ∧  ( 𝑎 ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  →  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) | 
						
							| 62 | 61 | expr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  ( ( 𝑎 ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) )  →  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) | 
						
							| 63 | 62 | necon3d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  ∧  𝑏  ∈  𝐼 )  →  ( ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) )  →  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) | 
						
							| 64 | 63 | ss2rabdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  { 𝑏  ∈  𝐼  ∣  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ⊆  { 𝑏  ∈  𝐼  ∣  ( 𝑎 ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ) | 
						
							| 65 | 44 64 | ssfid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  { 𝑏  ∈  𝐼  ∣  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin ) | 
						
							| 66 | 1 38 33 2 39 41 | dsmmelbas | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 )  ∈  𝐻  ↔  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 )  ∈  ( Base ‘ 𝑃 )  ∧  { 𝑏  ∈  𝐼  ∣  ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 )  ≠  ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) }  ∈  Fin ) ) ) | 
						
							| 67 | 36 65 66 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻 )  →  ( ( invg ‘ 𝑃 ) ‘ 𝑎 )  ∈  𝐻 ) | 
						
							| 68 | 6 7 8 16 22 29 67 30 | issubgrpd2 | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝑃 ) ) |