Metamath Proof Explorer


Theorem dsmmsubg

Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmsubg.p 𝑃 = ( 𝑆 Xs 𝑅 )
dsmmsubg.h 𝐻 = ( Base ‘ ( 𝑆m 𝑅 ) )
dsmmsubg.i ( 𝜑𝐼𝑊 )
dsmmsubg.s ( 𝜑𝑆𝑉 )
dsmmsubg.r ( 𝜑𝑅 : 𝐼 ⟶ Grp )
Assertion dsmmsubg ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 dsmmsubg.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 dsmmsubg.h 𝐻 = ( Base ‘ ( 𝑆m 𝑅 ) )
3 dsmmsubg.i ( 𝜑𝐼𝑊 )
4 dsmmsubg.s ( 𝜑𝑆𝑉 )
5 dsmmsubg.r ( 𝜑𝑅 : 𝐼 ⟶ Grp )
6 eqidd ( 𝜑 → ( 𝑃s 𝐻 ) = ( 𝑃s 𝐻 ) )
7 eqidd ( 𝜑 → ( 0g𝑃 ) = ( 0g𝑃 ) )
8 eqidd ( 𝜑 → ( +g𝑃 ) = ( +g𝑃 ) )
9 5 3 fexd ( 𝜑𝑅 ∈ V )
10 eqid { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } = { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin }
11 10 dsmmbase ( 𝑅 ∈ V → { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆m 𝑅 ) ) )
12 9 11 syl ( 𝜑 → { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆m 𝑅 ) ) )
13 ssrab2 { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin } ⊆ ( Base ‘ ( 𝑆 Xs 𝑅 ) )
14 12 13 eqsstrrdi ( 𝜑 → ( Base ‘ ( 𝑆m 𝑅 ) ) ⊆ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) )
15 1 fveq2i ( Base ‘ 𝑃 ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) )
16 14 2 15 3sstr4g ( 𝜑𝐻 ⊆ ( Base ‘ 𝑃 ) )
17 grpmnd ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd )
18 17 ssriv Grp ⊆ Mnd
19 fss ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd )
20 5 18 19 sylancl ( 𝜑𝑅 : 𝐼 ⟶ Mnd )
21 eqid ( 0g𝑃 ) = ( 0g𝑃 )
22 1 2 3 4 20 21 dsmm0cl ( 𝜑 → ( 0g𝑃 ) ∈ 𝐻 )
23 3 3ad2ant1 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝐼𝑊 )
24 4 3ad2ant1 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑆𝑉 )
25 20 3ad2ant1 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑅 : 𝐼 ⟶ Mnd )
26 simp2 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑎𝐻 )
27 simp3 ( ( 𝜑𝑎𝐻𝑏𝐻 ) → 𝑏𝐻 )
28 eqid ( +g𝑃 ) = ( +g𝑃 )
29 1 2 23 24 25 26 27 28 dsmmacl ( ( 𝜑𝑎𝐻𝑏𝐻 ) → ( 𝑎 ( +g𝑃 ) 𝑏 ) ∈ 𝐻 )
30 1 3 4 5 prdsgrpd ( 𝜑𝑃 ∈ Grp )
31 30 adantr ( ( 𝜑𝑎𝐻 ) → 𝑃 ∈ Grp )
32 16 sselda ( ( 𝜑𝑎𝐻 ) → 𝑎 ∈ ( Base ‘ 𝑃 ) )
33 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
34 eqid ( invg𝑃 ) = ( invg𝑃 )
35 33 34 grpinvcl ( ( 𝑃 ∈ Grp ∧ 𝑎 ∈ ( Base ‘ 𝑃 ) ) → ( ( invg𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) )
36 31 32 35 syl2anc ( ( 𝜑𝑎𝐻 ) → ( ( invg𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) )
37 simpr ( ( 𝜑𝑎𝐻 ) → 𝑎𝐻 )
38 eqid ( 𝑆m 𝑅 ) = ( 𝑆m 𝑅 )
39 3 adantr ( ( 𝜑𝑎𝐻 ) → 𝐼𝑊 )
40 5 ffnd ( 𝜑𝑅 Fn 𝐼 )
41 40 adantr ( ( 𝜑𝑎𝐻 ) → 𝑅 Fn 𝐼 )
42 1 38 33 2 39 41 dsmmelbas ( ( 𝜑𝑎𝐻 ) → ( 𝑎𝐻 ↔ ( 𝑎 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin ) ) )
43 37 42 mpbid ( ( 𝜑𝑎𝐻 ) → ( 𝑎 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin ) )
44 43 simprd ( ( 𝜑𝑎𝐻 ) → { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin )
45 3 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝐼𝑊 )
46 4 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑆𝑉 )
47 5 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑅 : 𝐼 ⟶ Grp )
48 32 adantr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑃 ) )
49 simpr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → 𝑏𝐼 )
50 1 45 46 47 33 34 48 49 prdsinvgd2 ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) )
51 50 adantrr ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) )
52 fveq2 ( ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) )
53 52 ad2antll ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) = ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) )
54 5 ffvelrnda ( ( 𝜑𝑏𝐼 ) → ( 𝑅𝑏 ) ∈ Grp )
55 54 adantlr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( 𝑅𝑏 ) ∈ Grp )
56 eqid ( 0g ‘ ( 𝑅𝑏 ) ) = ( 0g ‘ ( 𝑅𝑏 ) )
57 eqid ( invg ‘ ( 𝑅𝑏 ) ) = ( invg ‘ ( 𝑅𝑏 ) )
58 56 57 grpinvid ( ( 𝑅𝑏 ) ∈ Grp → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
59 55 58 syl ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
60 59 adantrr ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 0g ‘ ( 𝑅𝑏 ) ) ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
61 51 53 60 3eqtrd ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑏𝐼 ∧ ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) )
62 61 expr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( 𝑎𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( 0g ‘ ( 𝑅𝑏 ) ) ) )
63 62 necon3d ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑏𝐼 ) → ( ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) → ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) ) )
64 63 ss2rabdv ( ( 𝜑𝑎𝐻 ) → { 𝑏𝐼 ∣ ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ⊆ { 𝑏𝐼 ∣ ( 𝑎𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } )
65 44 64 ssfid ( ( 𝜑𝑎𝐻 ) → { 𝑏𝐼 ∣ ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin )
66 1 38 33 2 39 41 dsmmelbas ( ( 𝜑𝑎𝐻 ) → ( ( ( invg𝑃 ) ‘ 𝑎 ) ∈ 𝐻 ↔ ( ( ( invg𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏𝐼 ∣ ( ( ( invg𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅𝑏 ) ) } ∈ Fin ) ) )
67 36 65 66 mpbir2and ( ( 𝜑𝑎𝐻 ) → ( ( invg𝑃 ) ‘ 𝑎 ) ∈ 𝐻 )
68 6 7 8 16 22 29 67 30 issubgrpd2 ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝑃 ) )